زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پروژه تجزیه و تحلیل اثر بار حرارتی یک لوله گرمایی بدون فتیله ( ترموسیفون ) و محاسبه ضریب کلی انتقال حرارت و جابجایی بر ر

اختصاصی از زد فایل دانلود پروژه تجزیه و تحلیل اثر بار حرارتی یک لوله گرمایی بدون فتیله ( ترموسیفون ) و محاسبه ضریب کلی انتقال حرارت و جابجایی بر روی آن دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه تجزیه و تحلیل اثر بار حرارتی یک لوله گرمایی بدون فتیله ( ترموسیفون ) و محاسبه ضریب کلی انتقال حرارت و جابجایی بر روی آن


دانلود پروژه تجزیه و تحلیل اثر بار حرارتی یک لوله گرمایی بدون فتیله ( ترموسیفون ) و محاسبه ضریب کلی انتقال حرارت و جابجایی بر روی آن

این تحقیق به بررسی نحوه استفاده از ترموسیفون در صنایع مختلف و تجزیه و تحلیل اثر بار حرارتی ترموسیفون و محاسبه ضریب کلی انتقال حرارت و جابجایی  برروی آن میپردازد. 

در فصل  اول  به بررسی بازیافت گرما و کاربردهای آن در صنعت پرداخته ایم.

در فصل دوم در مورد لوله های گرمایی و انواع آن و همچنین مصارف آن در صنایع مختلف بحث شده است.

در فصل سوم به نحوه استفاده از ترموسیفون در صنعت نانوایی و فواید آن در جلوگیری از اتلاف انرژی اشاره شده است.

در فصل چهارم به بررسی تاثیر نسبت هندسی و نسبت پر شدن بر ویژگی های انتقال گرمای یک ترموسیفون بسته دو فازی پرداخته ایم .

در فصل پنجم اثر بار حرارتی یک ترموسیفون و محاسبه ضریب کلی انتقال حرارت و جابجایی بر روی آن را مورد بررسی قرار دادیم

با صنعتی شدن بیش تر جهان، بخش صنعتی انرژی بیش تری را نسبت به گذشته مصرف می کند . بیش تر انرژی برای مقاصد صنعتی، هم چون تولید بخار، آب داغ، دستگاه های گرم کننده و محرک استفاده می شود. مصرف انرژی رو به افزایش است اما منابع انرژی موجود در حال کاهش می باشند. این امر هشداری است برای بخش صنعتی . در نتیجه بخش صنعتی سعی در بازیافت و دسترسی مجدد به انرژی مصرف شده داشته است.

بازیافت گرمای هدر رفته یکی از گزینه ها در محافظت از انرژی و حفظ منابع انرژی است. سال هاست که این روش مورد تحقیق و بررسی بوده است . استفاده از روش بازیافت گرمای هدر رفته برای صنایع تازگی ندارد. لوازم بازیافت گرمای هدر رفته ، به عنوان مثال ، مبدل های گرمایی می باشند. هر وسیله ای که مبادله گرما را میان دو سیال تسهیل نماید ، ممکن است یک مبدل گرمایی دانسته شود . تنوع کاربردهایی که در آن ها از لوازم مبدل های گرمایی استفاده می شود ، دامنه ی وسیعی از لوازم را شامل می شوند که در پیشرفته بودن به لحاظ فنی و اندازه شامل لوازمی چون رادیاتورها و یخچال های خانگی، موتور هواپیما ها و موتور وسایل نقلیه و کارخانه فرآوری شیمیایی می شوند. در نتیجه ، شکل های مختلف مبدل های گرمایی طراحی شده اند. این ها اغلب تحت عنوان recuprators یا regenemtor بسته به فرآیند ی که از طریق آن مبادله گرمایی میان 2 سیال انتقال گرما صورت می پذیرد ، نامیده می شوند. استفاده از روش بازیافت گرمای هدر رفته نه تنها مصرف منابع عمده را کاهش می دهد ، بلکه آزاد سازی دی اکسید کربن به محیط را نیز می کاهد. و نقش مهمی در کاهش تولید دی اکسید کربن با کاهش مصرف منابع عمده انرژی هم چون ، زغال سنگ، سوخت فسیلی، و غیره ، ایفا می کند. جنبه ی محیطی، همچنین برای بخش صنعتی یک مورد نگرانی بوده است. امروزه ، با تغییرات بسیاری در این سیاره به دلیل آزاد سازی دی اکسید کربن به محیط روبرو هستیم : گرم شدن زمین ، کاهش لایه های اوزون ، تغییرات قابل توجه آب و هوایی و بسیاری دیگر . این ها فقط چند مورد از عواقب عدم کنترل مؤثر مصرف انرژی توسط انسان است .

بازیافت حرارت، بهره برداری از انرژی هدر رونده ( waste energy ) از فرآیندهای مختلف صنعتی است. در بسیاری از طرح ها، نظیر صنایع قند، پتروشیمی، پالایشگاه ها و ....، انرژی، مهم ترین عامل در سوددهی این طرح هاست. نکته ی اصلی در بازیافت حرارت اتلافی، آن است که بتوان کاربردهای مناسب و همچنین، یک روش علمی و یا وسیله ی کم هزینه برای استفاده از از این انرژی پیدا نمود.  این وسایل را، تجهیزات بازیافت حرارت می نامند. بازیافت انرژی، علاوه بر ذخیره سازی انرژی، همواره اقتصادی بوده و موجب کاهش آلودگی محیط زیست می باشد.

کاربردهای بازیافت انرژی در صنعت:

  • صنایع خمیر سازی و کاغذ سازی، برای کلیه ی فرآیندهای خود، از پیش گرم نمودن آب آسیاب ها به وسیله ی بخار ناشی از جدا کننده های گاز ـ مایع (separator) تا خنک نمودن فاضلاب صنعتی خروجی پس از تصفیه ی آن، به بازیافت حرارت نیاز دارند.
  • صنایع شیمیایی، تقریباً در کلیه ی فرآیندها، برای استفاده از انرژی در تولید مواد خاص مورد نظر، نیاز به بازیافت حرارت دارند.
  • صنایع نفت، نیاز به بازیافت گرما از آب همراه نفت و گاز و احیاء کننده های فرآیند تصفیه ی نفت و گاز و همچنین در مورد احیاء گلایکول و آمین دارند.
  • در صنایع غذایی و صنایع الکل سازی، مبادله کننده ها برای پاستوریزه نمودن، بازیافت
    حرارت لازم برای رنگ بری آب، گرم نمودن ذخیره ی مواد غذایی در فرآیندهای تقطیر
    پیش از ورود به برج و بازیافت حرارت زائد از خشک کننده ها و دستگاه های پخت، به کار می روند.

فوائد اقتصادی بازیافت گرما:

عامل تعیین کننده ی بازگشت سرمایه، کاهش هزینه ی خرید انرژی در آینده در اثر صرفه جویی در مصرف انرژی، در برابر هزینه ی خرید مبدل های حرارتی است که می توانند این کاهش مصرف را، برای فرآیندها فراهم نمایند.  به کار بردن مبدل های حرارتی، بسیار سودمند است و عموماً برای هر یک میلیون Btu / hr  در سال، هزینه ای در حدود $ 35000  ذخیره می شود. عامل تعیین کننده ی دیگر، دمای عملیاتی فرآیندهای صنعتی است. دماهای بالاتر، کیفیت و ارزش بیشتری را برای گرمای بازیافت شده، ایجاد می نمایند. کمپانی هایی که در مبدل های حرارتی سرمایه گذاری می نمایند، عموماً توجه کمتری به مصارف عمومی دارند و در نهایت، صنایعی مانند خطوط هوایی آمریکا و یا صنایع
Clark – Schwebel Fiber glass ، ادعا می نمایند، که نصب مبدل های حرارتی برای بازیافت حرارت، می تواند هزینه ی خود را ظرف 2 تا 6 ماه بازگرداند.

از لحاظ اقتصادی، امکان پذیر بودن سیستم بازیافت انرژی گاز ـ گاز، دارای ملاحظاتی می باشد:

  • بهای انرژی: بالا بودن بهای انرژی، علاقه را برای سطوح بالاتر بازیافت، افزایش می دهد.
  • ارزش انرژی تلف شده ( waste grade ) : ارزش انرژی تلف شده در دماهای بالا برای بازیافت، اقتصادی تر می باشند.  اختلاف دمای زیاد بین منبع انرژی تلف شده  و جریان هوای جانشین، اقتصادی تر است.
  • توافق و استمرار عرضه و تقاضای انرژی دور ریز:  بازیافت انرژی، هنگامی اقتصادی تر است، که عرضه با تقاضا مطابق بوده و هر دو تقریباًٌ ثابت باشند.
  • تأثیر سیستم های بازیافت بر تجهیزات سرمایشی و گرمایشی.

فوائد زیست محیطی بازیافت گرما:

بازیافت حرارت، آلودگی منتشره ی ناشی از تولید گرما را کاهش می دهد.  این آلودکی، شامل ذرات مونواکسید کربن، دی اکسید کربن، دی اکسید سولفور و مونو اکسید نیتروژن می باشند.  استفاده از دستگاه های بازیافت حرارت،  موجب کاهش آلودگی های زیست محیطی ناشی از استخراج، انتقال و نگهداری از حامل های اولیه ی انرژی می شود.

بسیاری از کارخانه ها و ساختمان های صنعتی، معمولاً دارای نرخ (rate)  خروج بخار بالا بوده، معمولاً فرآیندها، نیازمند مصرف بیش از حد انرژی اند.

آلودگی هوای داخل مجموعه، موجب می شود که بخار، از شرایط مناسب خود خارج شود.  بخاری که شامل آلودگی هایی مانند، بخارات قابل اشتعال و ذرات جامد باشد، باید از ذرات پاک سازی شده (Cleaned) و به شرایط تعیین شده ی خود باز گردد. در غیر این صورت، یک سیستم خروج بخار موضعی و یا عمومی را به کار می برند.

هنگامی که بخار به هوا تخلیه می شود،  با خود انرژی زیادی را خارج می نماید؛ در نتیجه، هنگامی که پاک سازی هوا و بخارات خروجی، برای رسیدن به شرایط مطلوب ممکن نباشد، سیستم بازیافت   حرارت، مورد بررسی قرار می گیرد؛ زیرا ذخیره سازی و بازیافت آن، به مقدار قابل توجهی مصرف انرژی را کاهش می دهد.

تجهیزات بازیافت انرژی:

اساس تجهیزات بازیافت انرژی گاز ـ گاز، دو گونه است:

  • سیستم های بازیافت گرمای محسوس: که تنها گرمای محسوس را از جریان بخار هوای خروجی، بازیافت می نمایند.
  • سیستم های بازیافت گرمای نهایی: که بازیافت آنتالپی نیز نامیده می شوند، هم گرمای محسوس و هم گرمای نامحسوس را بین دو جریان هوا انتقال می دهند.

نوع تجهیزات بازیافت حرارت مورد استفاده، بر مبنای نوع انرژی ای که بازیافت می شود، مقدار مجاز آلودگی همراه و هزینه ی تجهیزات و سیستم ها می باشد.

متداول ترین انواع تجهیزات سیستم های بازیافت انرژی گاز ـ گاز، شامل:

مبدل های حرارتی صفحه ای ثابت ( fix – plate ) ، مبدل های حرارتی گردان ( rotary ) و مبدل های حرارتی گردشی ( run – around loops ) و لوله های حرارتی.

  1. 1. لوله های حرارتی Heat Pipe Heat Exchanger :

لوله های حرارتی ، لوله هایی هستند که با قرار دادن یک فتیله با خاصیت مویینگی کامل تخلیه کردن هوا و پر کردن با یک سیال انتقال دهنده ی حرارت ( سیال عامل ) و عایق سازی دائمی لوله ها ( نسبت به ورود و خروج جرم ) ساخته می شوند .

لوله های حرارتی در یک سیکل بسته تبخیر کننده / کندانسور عمل می نماید که به صورت پیوسته تا هنگامی که اختلاف دما وجود دارد و انتهای سرد در ارتفاع بالاتری از انتهای گرم قرار دارد ، عمل       می نماید .

در فصل بعد ، درباره ی لوله های گرمایی و یک نوع خاص آن یعنی ترموسیفون بیش تر صحبت خواهد شد .

  1. مبدل های حرارتی چرخنده ( گردان ) Rotary :

مبدل های حرارتی گردان می توانند گرمای نهان را همانند گرمای محسوس ، بسته به ماده ی واسطه ی انتقال حرارتی به کار می رود ( depending up on heat transfer media used ) بازیافت نمایند .

یک مبدل های حرارتی گاز – گاز دوار ، چرخ حرارتی ، یک سیلندر چرخنده ( revolving ) است که به وسیله ی یک ماده واسطه نفوذ پذیر نسبت به هوا اشغال شده است ( filled with an air permible Heat Exchanger )  این واسطه ( ماده ) دارای سطح وسیع داخلی می باشد .

جریان ورودی هوا ( Adjucent makeup ) و جریان هوای خروجی ، از میان نیمی از مبدل های حرارتی عبور می نماید که دو جریان هوا در دو جهت مخالف جریان می یابند .

انرژی همان طور که ماده واسطه در معرض گاز قرار می گیرند ، از یک جریان هوا به دیگری منتقل می شود . گرمای محسوس همراه با حرکت ( pick up ) ماده واسطه منتقل شده  و گرمای ذخیره شده ( stares heat ) را به درون جریان گاز سرد همراه با گردش چرخ رها می سازد .

اگر ماده واسطه برای انتقال گرمای نهان مناسب باشد ، گرمای نهان همراه با میعان رطوبت موجود در ماده واسطه از جریان گاز سرد ، هم زمان با افزایش نسبی رطوبت موجود د رماده واسطه منتقل می شود.

رطوبت ( در قسمت گاز داغ خروجی ) در حین تبخیر شدن به جریان هوای گاز با رطوبت نسبی کمتر رها سازی می شود .

آلودگی های هوا ( Air Contaminants ) ، دمای نقطه ی شبنم و دمای گاز خروجی و ویژگی های هوای در حال گرم شدن مناسب ترین نوع ماده واسطه را تعیین می نماید .

ماده واسطه برای انتقال گرمای محسوس آلومینیم ، مس ، فولاد ضد زنگ و (Monel ) می باشد .

ماده واسطه برای انتقال گرمای نهایی ( total ) می تواند هر ماده ای را که به عنوان جاذب رفتار می نماید ، مانند کلراید لیتیم و آلومینا ، شامل شود .

نرخ دریافت انرژی تابعی از سرعت چرخ است .

فهرست مطالب:

چکیده                                                                                                                                                                       

مقدمه                                                                                                                                                                      

فصل اول :  بازیافت گرما

کاربردهای بازیافت انرژی در صنعت                                                                                                                                    

مزایای اقتصادی بازیافت گرما                                                                                                                                              

مزایای زیست محیطی بازیافت گرما               5

تجهیزات بازیافت انرژی      6

اساس تجهیزات بازیافت انرژیگاز – گاز               6

1ـ لوله های حرارتی (heat pipe)                                                                                                                                      

2 ـ مبدل های حرارتی گردان (Rotary)                                                                                                                             

3 ـ سیستم بازیافت انرژی گردشی(Run – Around energy recovery Loop)                                                          

4 ـ مبدل های حرارتی صفحه ای ثابت (Fix Plate)                                                                                                           

فصل دوم: آشنایی با لوله های گرمایی

تئوری لوله های گرمایی         11

اصول عملکرد لوله های گرمایی                                                                                      

محدودیت های انتقال حرارت در لوله های گرمایی           18

1 ـ حد جوشش             18

2 ـ حد موئینگی                   19

3 ـ حد لزجت                19

4 ـ حد ماندگی            20

5 ـ حد صوتی            20

انواع لوله های گرمایی               22

الف) بر حسب ساختار             22

1 ـ ترموسیفون               22

2 ـ لوله ی گرمایی استاندارد                                                                                                                                                

3 ـ لوله ی گرمایی حلقوی              24

4 ـ لوله گرمایی صفحه تخت                                                                                                                                                

5 ـ لوله ی گرمایی شعاعی (گردان)                                                                                                                                    

6 ـ لوله ی گرمایی پیش لبه                                                                                                                                                 

ب) بر حسب دمای عملیاتی                                                                                                                                                 

1 ـ لوله ی گرمایی سرمازا (CHP)                                                                                                                                        

2 ـ لوله ی گرمایی دما پایین (LHP)                                                                                                                                     

3 ـ لوله ی گرمایی دما متوسط                                                                                                                                              

4 ـ لوله ی گرمایی دما بالا        26

محدوده ی کاربرد لوله های گرمایی        26

کاربردهای مبدل های حرارتی لوله ی گرمایی                27

1 ـ گرمایش کف و روشنایی ساختمان               27

2 ـ گلخانه ها و کاربردهای کشاورزی          28

3 ـ سرد کردن وسایل برقی و الکترونیکی                28

4 ـ تولید الکتریسیته                  30

5 ـ دیگ بازیاب گرمای اتلافی                                                                                                                                             

6 ـ جوش آورهای صنایع شیمیایی و پتروشیمی            31

7 ـ مبدل های حرارتی خشک کن ـ هوا                  32

8 ـ بازیافت گرمایی محیط نانوایی                                                                                                                                        

فصل سوم : بازیافت گرمای هدر رفته در نانوایی ها

سیستم بازیافت گرما                   36

استفاده از سیستم بازیافت گرما در صنایع پخت نان            37

سیستم بازیافت گرمای پخت نان Buttercup با استفاده از LTHE                 

سیستم گرمای هدر رفته در نانوایی          38

تجزیه و تحلیل طرح                                                                                                                                                        

شرایط نانوایی                                                                                                                                                               

سیستم لوله و مجاری موجود در نانوایی          39

سیستم فن                                                                                                                                                                   

شارژ نمودن مبدل گرمایی لوله گرمایی ترموسیفون حلقه ای     41

بررسی اطلاعات نادرست قبلی                                                                                                                                             

اندازه گیری جریان 

اندازه گیری دما                                                                                                                                                             

فصل چهارم : تاثیر نسبت هندسی و نسبت پر شدن بر ویژگی های انتقال گرما در یک ترموسیفون بسته دو فازی                                                             

لوازم آزمایشی و فرآیند مربوط بدان     47

نتایج آزمایشگاهی و بحث و بررسی        50

نتایج          

فهرست علامات   

فصل پنجم : تجزیه و تحلیل اثر بار حرارتی یک لوله گرمایی بدون فتیله ( ترموسیفون ) و محاسبه ضریب کلی انتقال حرارت و جابجایی بر روی آن

آزمایش های ترموسیفون       55

تجزیه و تحلیل اثر بار حرارتی لوله گرمایی         57

اتلاف حرارت در قسمت چگالنده          57

اتلاف حرارت در قسمت تبخیر کننده و آدیاباتیک        59

بحث و نتیجه گیری   61

Cahpter 5 : The effect analysis of  the heat load of a wickless heat pipe (thermosiphon) and compotation of total heat transfer coefficient and moving on it .

Abstract                                                                                                      65

Introduction                                                                                               65

thermosyphon experiments                                                                         66

Heat waste in dester part                                                                            68

Heat waste in evapolator and adiabatic part                                              70

Result and discussion                                                                                 71

REFERENCES                                                                                         74

شامل 74 صفحه فایل WORD قابل ویرایش


دانلود با لینک مستقیم


دانلود پروژه تجزیه و تحلیل اثر بار حرارتی یک لوله گرمایی بدون فتیله ( ترموسیفون ) و محاسبه ضریب کلی انتقال حرارت و جابجایی بر روی آن

تحقیق در مورد ریخته گری و عملیات حرارتی آلیاژهای منیزیم

اختصاصی از زد فایل تحقیق در مورد ریخته گری و عملیات حرارتی آلیاژهای منیزیم دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد ریخته گری و عملیات حرارتی آلیاژهای منیزیم


تحقیق در مورد ریخته گری و عملیات حرارتی آلیاژهای منیزیم

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه21

بخشی از فهرست مطالب

چکیده

 

آشنایی با خواص منیزیم

 

بررسی تأثیر آلومینیم و روی در منیزیم

 

بررسی تأثیر عناصر آلیاژی بر خواص مکانیکی آلیاژهای منیزیم

 

تأثیر عناصر فرعی

 

آماده سازی مذاب

 

طراحی سیستم راهگاهی

 

عملیات حرارتی منیزیم

 

نتیجه گیری

 

منیزیم فلزی است سبک با قابلیت های ویژه، این فلز معمولاً بصورت آلیاژ در صنعت مورد استفاده قرار می گیرد و آلیاژهای آن معمولاً در دمای ذوب با هوا واکنش داده و اکسید می شوند. برای جلوگیری از واکنش منیزیم مذاب با اکسیژن هوا باید از کوره های مخصوص ذوب فلزات استفاده کرد که در آنها هوا جریان نداشته باشد و با افزدن ترکیبات خاص به مذاب و مواد قالبگیری حتی الامکان را اکسید شدن مذاب جلوگیری بعمل آید و با طراحی مناسب سیستم راهگاهی نیز می توان تا حد زیادی از مذاب محافظت نمود، بطوری که در جریان پر شدن قالب واکنشی بین مذاب و دیواره قالب صورت نگیرد و از تلاطم مذاب جلوگیری شود. آلیاژهای صنعتی منیزیم معمولاً با دو سیکل T4 و T6 عملیات حرارتی می شوند تا قابلیت و خواص مکانیکی و متالوژیکی آنها به بالاترین حد خود برسد.

 

مقدمه

 

در این مقاله سعی بر آن است که با معرفی آلیاژهای منیزیم و با توجه به کاربرد وسیع این آلیاژ در صنایع هوا فضا، یکی از راههای شکل دادن به این فلز که ریخته گیری آلیاژهای آن می باشد را بصورت مختصر مورد بررسی قرار داده و سیکل های عملیات حرارتی که روی این آلیاژها اعمال می شود تا حد امکان معرفی نماییم. ریخته گری آلیاژهای منیزیم از آن حائز اهمیت است که در دمای ذوب شدیداً اکسید شده و میسوزد، که مهار این امر تکنولوژی پیچیده و خاصی را طلب می کند.

 


دانلود با لینک مستقیم


تحقیق در مورد ریخته گری و عملیات حرارتی آلیاژهای منیزیم

مقاله در مورد پروتئین های مثوک حرارتی

اختصاصی از زد فایل مقاله در مورد پروتئین های مثوک حرارتی دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد پروتئین های مثوک حرارتی


مقاله در مورد پروتئین های مثوک حرارتی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه77

 

Heat shock proteins ( HSPs)

پروتئین های مثوک حرارتی

همانطور که می دانید یک دسته از عواملی که در رشد و فعالیت میکروارگانیسمها  موثر هستند عوامل محیطی می باشند که به 2 دسته فیزیکی و شیمیایی تقسیم می شوند. یکی از مهمترین این عوامل که به عنوان یک عامل فیزیکی مطرح می گردد گرما ( حرارت) می باشد. حرارت بر کلیه فعل و انفعالات سلولی اثر دارد و متابولیسم سلول را تحت تاثیر قرار می دهد. اگر حرارت تاحد معینی افزایش یابد واکنش ها را تسریع می کند ولی اگر از حد معین تجاز کند فعالیت های متابولیکی را متوقف می کند زیرا باعث می گردد که پروتئین ها ماهیت خود را از دست بدهند، دناتوره گردند، آنزیم های مهم و اساسی سلولی از کار افتاده روی غشا و فشار اسمزی اثر کرده در نتیجه نقل و انتقال مواد را تحت تاثیر قرارداده  و روی مواد غذایی کاهش می یابد و نفوذ مواد سمی و زاید افزایش پیدا کرده و خروج آنها کند می گردد. در نتیجه فعالیتهای سلولی مختل می گردد. همچنین دما روی فعالیت هایی مثل تولید اسپور، تولید پیگمان، عمل تخمیر و تنفس هم اثر می گذارد.

حرارت اپتیمم: مناسبترین درجه حرارت برای رشد یک باکتری را گویند.

حرارت لتال: حرارت کشنده باکتری ها که سبب می گردد تمام میکروارگانیسمهای یک گونه درعر 10 دقیقه کشته شوند.

ترموتولورانس : تحمل گرمایی

چاپرون ها :  مولکول هایی پروتئینی هستند که برای فولدینگ و تثبیت پروتئین ها اختصاص پیدا کرده اند و به پروتئین های جدید در حال ترجمه متصل می گردند.

Folding : تا شدگی پروتئین ها

Unfolding :باز شدن تای پروتئین

Refolding : تاخوردگی مجدد پروتیئن

باکتری ها از نظر نیازهای حرارتی به 3 دسته تقسیم می شوند:

ترموفیل ها یا گرما دوست ها با دمای opt بالای 45 درجه که در مناطق گرم، خاک و کود و ... زندگی می کنند و از نظر صنعتی نیز مهم هستند.

باکتریها هایپرترموفیل نیز گروهی از باکتری ها هستند که در حرارت بسیار بالا مثل مناطق آتشفشانی زندگی می کنند و قادر به رشدهستند و opt بالای 80دارند. مثل Bacillus steavo thermophilus

گروه دوم مزوفیل ها هستند مثل E coli که در حرارت های میانی رشد می کنند گروه سوم نیز ساکروفیل ها هستند مثل polaromonas که در حرارت های زیر 20 و حتی زیر صفر صفر رشد می کنند.


دانلود با لینک مستقیم


مقاله در مورد پروتئین های مثوک حرارتی

دانلود مقاله پایداری حرارتی الاستومرهای پلی یورتان

اختصاصی از زد فایل دانلود مقاله پایداری حرارتی الاستومرهای پلی یورتان دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله پایداری حرارتی الاستومرهای پلی یورتان


دانلود مقاله پایداری حرارتی الاستومرهای پلی یورتان

 

مشخصات این فایل
عنوان: پایداری حرارتی الاستومرهای پلی یورتان
فرمت فایل: word( قابل ویرایش)
تعداد صفحات: 38

این مقاله درمورد پایداری حرارتی الاستومرهای پلی یورتان می باشد.

بخشی از تیترها به همراه مختصری از توضیحات هر تیتر از مقاله پایداری حرارتی الاستومرهای پلی یورتان

اثر ساختار شیمیایی مواد تشکیل دهنده
پایداری حرارتی الاستومرهای پلی یورتان، به ترکیب شیمیای موادی که در فرمول بندی آنها به کار رفته است بستگی دارد. این موضوع در هر دو مورد پایداری حرارتی فیزیکی (ذوب و یا نرم شدن پلیمر) و پایداری حرارتی شیمیایی (جدایی و تجزیه گروه های یورتان) قابل توجه و بررسی است. قسمت های نرم تشکیل دهنده پلیمر (گروه های اتری و استری) نیز در پایداری حرراتی یورتان ها، سهم دارند. نقطه ذوب پلی یورتان های خطی در بعضی موارد بیش از   200 است. این موضوع نه تنها با ماهیت مواد به کار رفته و نسبت مولی آنها بستگی دارد بلکه به روش سنتز نیز ارتباط پیدا می کند. چون حضور و میزان دمین ها میکروکریستالی به وضعیت سنتز وابسته است. از طرفی افزایش دمین های باعث پایداری گرمایی بیشتر می گردند. ارتباط حرارتی الاستومرهای پلی استریورتان با مواد تشکیل دهنده آنها توسط ماسیولانیس مورد بررسی قرار گرفته است. بر اساس گزارش های وی، برای پلی یورتان هایی که میزان اجزاء سخت در آنها بیش از 30 درصد است، هیدروکینون دی بتاهدروکسی اتیل اتر بهترین زنجیر افزاینده برای مواردی است که پایداری ترمودینامیکی مدنظر است. وی همچنین گزارش کرد که پایداری حرارتی پلی یورتان های بر پایه بیش فنولA، نسبتاً کم است و نشان داد که پایدرای حرارت الاستومرهای تهیه شده از H12MDI در مقایسه با پلیمرهای تهیه شده ازMDI کمتر است. نوع دی....(ادامه دارد)

اثر پلی الها
پلی الهای استر و اتری یکی از قسمت های اصلی و مشخص تشکیل دهنده ساختار پلی یورتان ها می باشند. پلی استرها از پایداری حرارتی بهتری در مقایسه با پلی اترها برخوردارند و مقاومت آنها در مقابل اکسایش نسبتاً خوب است.
برتری پایداری پلی استرها با اندازه گیری رهایی از تنش پلیمرهای مربوطه در هوا و نیتروژن مشخص کرده اند. منحنی نستباً خطی به دست آمده در مورد پلی یوتان های تهیه شده از پلی استرها نشان دهنده ایناست که شکسته شدن زنجیرهای آنها در اثر اکسایش نبوده و لذا برگشت پذیر می باشد و پلیمر مربوطه خواص اولیه اش را کم و بیش حفظ کرده است. در صورتی که در مورد پلی یورتان های تهیه شده از پلی اترها، تجزیه سریع و برگشت ناپذیر آنها در هوا (در نیتروژن چنین نخواهد بود) نشان دهنده گسیختگی زنجیر و ماهیت اکسیدشوندگی این پلیمرها است.
در مورد یوتان هایی که پلی ال تشکیل دهنده آنها پلی اتر است، گروهی که با اکسید پروپیلن تهیه می شوند در مقایسه با آنهایی که با اکسید پلی اتیلن و یا اکسید1و4- بوتیلن ساخته می شوند سریع تر و آسان تر مورد حمله اکسیژن قرا می گیرد و اکسید می شوند. مطالعات رهایی از تنش الاستومرهای دارای پیوندهای عرضی در محیط هوا نیز نشان دهنده مقاومت حرارتی بهتر استریورتان ها نسبت به اتریورتان هاست. بنابراین در مواردی که پایداری ....(ادامه دارد)

مطالعاتDMTA
در این مطالعات با بررسی رفتار دینامیکی، مکانیکی پلیمرهای تهیه شده در یک گستره دمایی معین و مقایسه آنها و انتخاب نقطه شروع تغییرات مشخصLogE` به عنوان حد پایداری حرارتی اثرات نسبت های مولی بر پایداری حرارتی پلی یورتان ها مطالعه شد.
نتایج به دست آمده نشان داد که با افزایش نسبت مولی، پایداری حرارتی افزایش می یابد و این افزایش در پلی یورتان با نست مولی 1:3:2 حدود   20 بالاتر از پلی یورتان با نسبت مولی1:2:1 است. دلیل افزایش پایداری حرارتی به علت افزایش قسمت های سخت CHDI در زنجیر پلی یورتان مربوطه است. نسبت های مولی بیشتر از 1:3:2 به دلیل سخت شدن پلیمر و خارج شدن آن از حالت الاستومری مورد بررسی قرار نگرفت. در این بررسی همچنین ملاحظه شد ....(ادامه دارد)

انتخاب پلی یورتانها برای کاربردهای پیوندی
سازگاری بافتی
مواد پیوند شده در بافتهای نرم و سخت بدن همیشه عکس العملی را به دنبال دارند. التهاب حاد موضعی و مکانیزمهای ترمیمی سعی دارند که حالت تعادل را در بافت عروقی که به دنبال ضربه ناشی از پیوند ایجاد شده است دوباره برقرار کنند. کلاً سه نوع واکنش جسم خارجی براساس آرایش فیزیکی، خواص شیمیایی پیوند با پاسخ ایمنی بدن نسبت به پیوند وجود دارد.
پاسخها به علت خواص فیزیکی،‌شامل محصور شدن پیوند به وسیله لایه نازکی از سلولهای اپلی قلیایی (سلولهای پوشاننده سطح) یا بافت فیبرو، از پاسخهای طبیعی و مطلوب اند. کراتینیزاسیون (ضخیم شدن پوست) در پیوندهای جلدی،‌ضخیم شدن کپسول و تشکیل بیش از حد پلی ساکارید در اطراف لبه های تیز، از جمله پاسخهای قابل توجه نسبت به آرایش فیزیکی هستند. به علاوه سطوح نامنظم یا بزرگ و پیوسته پیوند،‌در نهایت سبب ایجاد «سلول بسیار بزرگ» یا تشکیل تومور می شود.
مواد شیمیایی سمی که یا در پلی مرها موجودند یا به علت تجزیه پلیمرها در بدن ایجاد میشوند،‌میتوانند واکنشهای التهابی مزمن و نکروز ....(ادامه دارد)

پلی یورتان کاردیوتان
پلی یورتان کاردیوتان،‌نام تجارتی برای مجموعه الاستومرهایی است که در سال 1967 معرفی شده اند. این مواد می توانند به صورت کوپلی مرهای سگمنته پلی یورتان (دی آلکیل سیلوکسان) مشخص شوند. توسعه یافته ترین ماده ، کاردیوتان 51 است که از پلی یورتان (90 درصد) و پلی دی متیل سیلوکسان (10 درصد) و حداقل 3 گروه انتهایی استوکسی واکنش پذیر به ازاء هر زنجیر تشکیل میشود. در طول ساخت پیش پلیمر در تتراهیدروفوران، دیوکسان به نسبت 2 به 1 و در حدود 5/12% جامدات (براساس وزن) یک قسمت از جزء سیلوکسان به بالون داخل آئورتی – یک محفظه پلی یورتانی طویل است که در حدود 30 میلی لیتر حجم دارد واز طریق یک لوله بلند به ذخیره گاز خارجی ونیروی محرکه متصل است. به جای اینکه خون از آئورت حرکت کند گاز داخل بالون جا به جا میشود و بالون همزمان با شروع سیستول منقبض میشود. حرکت دادن گاز به جای خون به داخل و خارج آئورت برای ایجاد حجم و تغییرات فشار، از نظر تکنیکی برای خون ساده تر و کم ضربه تر است.
صورت کووالان با اروتان جفت میشود. این جفت شدن مانع از جدایی فاز در دوره های زمانی طولانی میشود. در معرض هوا قرارگرفتن فیلمهای محلول سبب پخت مرطوب آن به کوپلی مر پلی یورتان – سیلیکون حاوی پیوند عرضی و شیری رنگ می شود. تجزیه....(ادامه دارد)

فهرست مطالب مقاله پایداری حرارتی الاستومرهای پلی یورتان

مقدمه
اثر قسمت های سخت:
جهت افزایش پایداری حرارتی
سیکلو آلیفاتیک› آرالکیل› آروماتیک
اثر پیوند عرضی
اثر پیوند عرضی ایزوسیانورات
پایداری حرارتی الاستومرهای پلی یورتان
سنتز
مطالعات DSC
اثر نسبت های مولی بر پایداری حرارتی
مطالعاتDMTA
کاربرد پلی یورتانها در پزشکی
زمینه تاریخی
انتخاب پلی یورتانها برای کاربردهای پیوندی
سازگاری خونی
پلی یورتان کاردیوتان


دانلود با لینک مستقیم


دانلود مقاله پایداری حرارتی الاستومرهای پلی یورتان