زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پاورپوینت های بازاریابی عصبی و بازاریابی ویروسی

اختصاصی از زد فایل پاورپوینت های بازاریابی عصبی و بازاریابی ویروسی دانلود با لینک مستقیم و پر سرعت .

پاورپوینت های بازاریابی عصبی و بازاریابی ویروسی


پاورپوینت های بازاریابی عصبی و بازاریابی ویروسی

دانلود دو سری پاورپوینت در زمینه های بازاریابی عصبی و بازاریابی ویروسی در 26 و 39 اسلاید قابل ویرایش

 

 

 

 

 

 

 

برخی از اسلاید های هر دو پاورپوینت:

هدف بازاریابی عصبی

مشکل ازدیاد پیام‌های تبلیغاتی

 خرید از فروشنده نامناسب

آیا بازاریابی عصبی در کسب‌و‌کارهای کوچک قابل استفاده است؟

بازاریابی ویروسی

مشکلات بازاریابی ویروسی

برخی راهکارهای غلبه بر مشکلات بازاریابی ویروسی

تاریخچه

دو بینش بازار یابی ویروسی

دلایل محبوبیت بازاریابی ویروسی

ویروسی ارزشی

روش های انتقال بازاریابی ویروس

موانع برسرراه بازاریابی ویروسی

ده روش موثر برای بازاریابی ویروسی

 

و دهها موضوع مورد بحث پیرامون این مطلب


دانلود با لینک مستقیم


پاورپوینت های بازاریابی عصبی و بازاریابی ویروسی

دانلود تحقیق شبکه های عصبی

اختصاصی از زد فایل دانلود تحقیق شبکه های عصبی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق شبکه های عصبی


دانلود تحقیق شبکه های عصبی

مقدمه
الگوریتم ها در کامپیوتر ها اعمال مشخص و واضحی هستند که بصورت پی در پی و در جهت رسیدن به هدف خاصی انجام می شوند.حتی در تعریف الگوریتم این گونه آمده است که الگوریتم عبارت است از مجموعه ای ازاعمال واضح که دنبال ای از عملیات را برای رسیدن به هدف خاصی دنبال می کنند.آنچه در این تعریف خود نمایی می کند کلمه دنباله می باشد که به معنای انجام کار ها بصورت گام به گام می باشد. این امر مشخص می کند که همه چیز در الگوریتم های سنتی باید قدم به قدم برای کامپیوتر مشخص و قابل فهم و درک باشد.حتی در اولین الگوریتمهای هوش مصنوعی نیز بر همین پایه و کار قدم به قدم بنا نهاده شده اند.
در اواخرقرن بیستم رویکرد به الگوریتم های جدید صورت گرفت که علتهای مختلفی داشت مثل حجیم بودن میزان محاسبات برخی مسایل و بالا بودن مرتبه زمانی الگوریتم های سنتی در مورد این مسایل باعث شد نیاز به الگوریتمهای جدید احساس شود.همچنین برخی کارهای انسان که هنوز قابل انجام توسط کامپیوتر نبودندو یا به بخوبی توسط کامپیوتر انجام نمی شدند باعث این رویکرد شد.
مهمترین الگوریتمهای جدید عبارتند از :1- شبکه های عصبی 2- منطق فازی  3- محاسبات تکاملی
                                                              
                           
شبکه عصبی چیست ؟
این سوال که آیا انسان توانا تر است یا کامپیوتر موضوعی است که ذهن بشر را به خود مشغول کرده است.
اگر جواب این سوال انسان است چرا کامپیوتر اعمالی مانند جمع و ضرب و محاسبات پیچیده را در کسری از ثانیه انجام می دهد، حال آنکه انسان برای انجام آن به زمان زیادی نیازمند است. واگر جواب آن کامپیوتر است چرا کامپیوتر از اعمالی مانند دیدن و شنیدن که انسان به راحتی آنها را انجام می دهدعاجزاست.جواب این مسئله را باید در ذات اعمال جستجو کرد . اعمال محاسباتی اعمالی هستند سریالی و پی در پی به همین دلیل توسط کامپیوتر به خوبی انجام می شوند.حال آنکه اعمالی مانند دیدن وشنیدن کارهای هستند موازی که مجمو عه ای از داده های متفاوت و متضاد در آنها تفکیک و پردازش می شوندو به همین دلیل توسط انسان به خوبی انجام می شوند. در واقع مغز انسان اعمال موازی را به خوبی درک و آنها را انجام می دهدو کامپیوتر اعمال سریالی را بهتر انجام می د هد.حال باید دیدآیا می توان این اعمال موازی و در واقع ساختار مغز انسان را به نوعی در کامپیوتر شبیه سازی کرد و آیا می توان امکان یادگیری که از جمله توانایی های انسان است به نوعی در کامپیوتر مدل سازی نمود.این کار به نوعی در انسان هم انجام می شود و زمان انجام آن عمدتا در کودکی است.به عنوان مثال یک کودک ممکن است یک شی مانند چکش را نشناسد اما هنگامی که آن را می بیند واسم آن را یاد می گیرد و سپس چند چکش متفاوت را می بینداین شی را بخوبی می شناسدو اگر بعد  از مدتی چکشی را که تا کنون آن را ندیده است ببیند به راحتی تشخیص می دهد  که شی مورد نظر یک چکش است و تنها از نظر جزئیات با چکش های مشابه که قبلا دیده است تفاوت دارد.
لازم به ذکر است که شبکه های عصبی تنها در یادگیری کاربرد ندارند، بلکه تمام مسائل جدید وکلاسیک توسط آنها قابل حل می باشد.اما آنچه شبکه های عصبی بدان نیازمند است مثالها و نمونه های مفید وکافی است که بتواند به خوبی فضای مسئله را پوشش دهند.حال باید دیدچگونه می توان شبکه عصبی انسان را به نوعی شبیه سازی نمود، برای این کار نخست به ساختار مغز و سیستم عصبی انسان نگاهی گذرا می اندازیم.
مغز انسان یکی از پیچیده ترین اعضای بدن است که تا کنون نیز به درستی شناخته نشده است و شاید اگر روزی به درستی شناخته شودبتوان شبیه سازی بهتری از آن انجام داد و به نتایج بهتری درباره هوش مصنوعی رسید.تحقیقات در مورد شبکه های عصبی نیز از زمانی آغاز شد که رامون سگال درباره ساختار مغز و اجزای تشکیل دهنده آن اطلاعات و نظراتی ارائه کرد. او در اوایل قرن بیستم مغز را به عنوان اجتماعی از اجزای کوچک محاسباتی دانست و آنها را نرون نامید.امروزه ما می دانیم که بیشتر فعالیتهای انسان را نرونها انجام می دهندو در کوچکترین فعالیتهای حیاتی انسان مانند پلک زدن نیز نقش حیاتی و اساسی دارند.این نکته هم بسیار جالب است بدانید که در بدن ما حدود نرون وجود دارد که هر کدام از این نرونها با   نرون دیگر در ارتباط هستند.نرونها شکلها و انواع مختلفی دارند، اما به طور عمده در سه دسته تقسیم بندی می شوند. اما نرون ها از نظری دیگر به دو دسته تقسیم می شوند:1- نرونهای داخلی مغز که در فاصله های حدود 100میکرون به یکدیگر متصلند ونرونهای خارجی که قسمتهای مختلف مغز را به یکدیگر و مغز را به ماهیچه ها و اعضای حسی را به مغز متصل می کنند.اما همانطور که گفتیم نرونها از نظری دیگر به سه دسته تقسیم می شوند که عبارتند از:
1- نرونهای حسی : کاری که این نرونها انجام می دهند این است که اطلاعات را از اندام های حسی بدن به مغز و نخاع می رسانند.
2- نرونهای محرک :این نرونهافرمانهای مغز و نخاع را به ماهیچه ها و غدد و سایر اندام های حسی و تحت فرمان مغز می رسانند.
3- نرونهای ارتباطی : این نرونها مانندیک ایستگاه ارتباطی بین نرونهای حسی ونرونهای محرک عمل می کنند .
گفتنی است که نرون ها در همه جای بدن هستند وبه عنوان عنصر اصلی مغز محسوب می شوندوبه تنهایی مانند یک واحد پردازش منطقی عمل می کنند نحوه عملیات نرون بسیار پیچیده است و هنوز در سطح میکروسکوپی چندان شناخته شده نیست ، هر چند قوانین پایه آن نسبتا روشن است. هر نرون ورودی های متعددی را پذیرا است که با یکدیگر به طریقی جمع می شوند. اگر در یک لحظه تعداد ورودی های فعال
نرون به حد کفایت برسدنرون نیز فعال شده و آتش  می کند. در غیر این صورت نرون به صورت غیر فعال و آرام باقی می ماند.حال به بررسی اجزاءخود نرون می پردازیم:
نرون از یک بدنه اصلی تشکبل شده است که به آن سوما گفته می شود. به سوما رشته های نا منظم طولانی متصل است که به آنها دندریت می گویند. قطر این رشته ها اغلب از یک میکرون نازکتر است و اشکال شاخه ای پیچیده ای دارند.شکل ظریف آنها شبیه شاخه های درخت بدون برگ است که هر شاخه بارها وبارها به شاخه های نازکتری منشعب می شود.دندریت ها نقش اتصالاتی را دارندکه ورودی هارا به نرون ها می رساند.این سلولها می توانندعملیاتی پیچیده تر از ععملیات جمع ساده را بر ورودی های خود انجام دهند، از این رو عمل جمع ساده را می توان به عنوان تقریب قابل قبولی از عملیات واقعی نرون به حساب آورد.
یکی از عناصر عصبی متصل به هسته نرون آکسون نامیده می شود.این عنصر بر خلاف دندریت از نظر الکتریکی فعال است و به عنوان خروجی نرون عمل می کند. آکسون همیشه در روی خروجی سلولها مشاهده می شوند لیکن اغلب در ار تباط های بین نرونی غایب اند.در این مواقع خروجی ها و ورودی ها هر دو بر روی دندریت هاواقع می شوند. آکسون وسیله ای غیر خطی است که در هنگام تجاوز پتانسیل ساکن داخل هسته از حد معینی پالس ولتاژی را به میزان یک هزارم ثانیه ، به نام پتانسیل فعالیت ، تولید می کند. این پتانسیل فعالیت در واقع یک سری از پرش های سریع ولتاژ است.رشته آکسون در نقطه تماس معینی به نام سیناپس قطع می شود ودر این مکان به دندریت سلول دیگر وصل می گردد. در واقع این تماس به صورت اتصال مستقیم نیست بلکه از طریق ماده شیمیایی موقتی صورت می گیرد.سیناپس پس از آنکه پتانسیل آن از طریق پتانسیل های فعالیت در یافتی از طریق آکسون به اندازه کافی افزایش یافته از خود ماده شیمیایی منتقل کننده عصبی ترشح می کند.برای این ترشح ممکن است به دریافت بیش از یک پتانسیل فعالیت نیاز باشد. منتقل کننده عصبی ترشح شده در شکاف بین آکسون ودندریت پخش می شودو باعث می گرددمی گردد که دروازه های موجود در دندریت ها فعال شده و باز شود و بدین صورت یون های شارژ شده وارد دندریت می شوند. این جریان یون است که باعث می شود پتانسیل دندریت افزایش یافته  و باعث یک پالس ولتاژ در دندریت شودکه پس از آن منتقل شده و وارد بدن نرون دیگر می گردد. هر دندریت ممکن است تحت تأثیرتعداد زیادی سیناپس باشد وبدین صورت اتصالات داخلی زیادی را ممکن می سازد. در اتصالات سیناپسی تعداد دروازه های باز شده بستگی به مقدار منتقل کننده عصبی آزاد شده داردو همچنین به نظر می رسدکه پاره ای سیناپس ها باعث تحریک دندریت ها می شوند در صورتی که پاره ای سیناپس ها دندریت ها را از تحریک باز می دارند. این به معنای تغییر پتانسیل محلی  دندریت ها در جهت مثبت یا منفی می باشد.یک نرون خود به تنهایی می تواند دارای ورودی های سیناپسی متعددی در روی دندریت های خود باشد و ممکن است با خروجی های سیناپسی متعددی به دندریت های نرون دیگر وصل شود.

 

فهرست مطالب

مقدمه                                              1

شبکه عصبی چیست ؟                                    2

یادگیری در سیستم های بیولوژیک                                 4

سازمان مغز                                          6                                                                                 
نرون پایه                                          7
                                                                                                                   
عملیات شبکه های عصبی                                      7

آموزش شبکه های عصبی                                  10                                                                                            

معرفی چند نوع شبکه عصبی                                          14                                                                                  
پرسپترون تک لایه                                                       14                                                                                   

پرسپترون چند لایه                                                       21                                                                                 
backpropagation                                               25                                                                                  
هاپفیلد                                                                               49                                                                        

ماشین  بولتزمن                                                                   67                                                                        

کوهونن                                                                          83                                                                       

کاربردهای شبکه های عصبی                                                          86                                                            

منابع                                             90

 

 

 

شامل 94 صفحه word


دانلود با لینک مستقیم


دانلود تحقیق شبکه های عصبی

دانلود مقاله مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن

اختصاصی از زد فایل دانلود مقاله مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن


دانلود مقاله مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن

 

مشخصات این فایل
عنوان: مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن
فرمت فایل: word( قابل ویرایش)
تعداد صفحات: 145

این مقاله درمورد مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن می باشد.

خلاصه آنچه در مقاله مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن می خوانید .

انواع یادگیری برای شبکه های عصبی:
1. یادگیری با ناظر:
در یادگیری با ناظر به قانون یاد گیری مجموعه ای از زوجهای داده ها به نام داده های یادگیری (Pi,Ti)i={1 … l } می دهند که در آن Pi ورودی به شبکه و Ti خروجی مطلوب شبکه برای ورودی Pi است. پس از اعمال ورودی Pi به شبکه عصبی در خروجی شبکه ai با Ti مقایسه شده و سپس خطای یادگیری محاسبه و از آن در جهت تنظیم پارامترهای شبکه استفاده می شود به گونه ای که اگر دفعه بعد به شبکه همان ورودی Pi اعمال شود خروجی شبکه به Ti نزدیکتر می گردد با توجه به این نکته که معلم سیستمی است که بر محیط وقوف دارد ( مثلا می داند که برای ورودی Pi خروجی مطلوب Ti است ).توجه داریم که محیط برای شبکه عصبی مجهول است . در لحظه k بردار ورودی (Pik) با تابع توضیع احتمال معینی که برای شبکه عصبی نا معلوماست انتخاب و بطور همزمان به شبکه عصبی و معلم اعمال می شود . جواب مطلوب (Tik) نیز توسط معلم به شبکه عصبی داده می شود . در حقیقت پاسخ مطلوب پاسخ بهینه ای است که شبکه عصبی برای ورودی مفروض باید به آن برسد . پارامترهای شبکه عصبی توسط دو سیگنال ورودی و خطا تنظیم می شود.به این صورت که پس از چند تکرار الگوریتم یادگیری که عموما توسط معادله تفاضلی بیان می شودبه پارامترهایی در فضای پارامترهای شبکه همگرا می شوند که برای آنها خطای یادگیری بسیار کوچک است و عملا شبکه عصبی شبکه عصبی معادل معلم می شود . یا به عبارتی دیگر اطلاعات مربوط به محیط (نگاشت بین TiوPi )که برای معلم روشن است به شبکه عصبی منتقل می شود و پس از این مرحله عملا می توان بجای معلم از شبکه عصبی استفاده کرد تا یادگیری تکمیل شود .

2. یادگیری تشدیدی:

یک اشکال یادگیری با ناظر این است که شبکه عصبی ممکن است بدون معلم نتواند مواضع جدیدی را که توسط مجموعه داده های جدید تجربی پوشانده نشده است یاد بگیرد . یادگیری از نوع تشدیدی این محدودیت را برطرف می کند . این نوع یادگیری بطور on-line صورت می گیرد در حالی که یادگیری با ناظر را به دو صورت on-line & off-line می توان انجام داد. در حالت off-line می توان از یک سیستم محاسب با در اختیار داشتن داده های یادگیری استفاده کرد و طراحی شبکه عصبی را به پایان رساند . پس از مرحله طراحی و یادگیری شبکه عصبی به عنوان یک سیستم استاتیکی عمل می کند . اما در یادگیری on-line شبکه عصبی همراه با خود سیستم یادگیر در حال انجام کار است و از این رو مثل یک سیستم دینامیکی عمل می کند . یادگیری از نوع تشدیدی یک یادگیری on-line از یک نگاشت ورودی-خروجی است . این کار از طریق یک پروسه سعی و خطا به صورتی انجام می پذیرد که یک شاخص اجرایی موسوم به سیگنال تشدید ماکزیمم شود و بنابر این الگوریتم نوعی از یادگیری با ناظر است که در آن به جای فراهم نمودن جواب واقعی ، به شبکه عددی که نشانگر میزان عملکرد شبکه است ارایه می شود. این بدین معنی است که اگر شبکه عصبی پارامترهایش را به گونه ای تغییر داد که منجر به یک حالت مساعد شد آنگاه تمایل سیستم یادگیر جهت تولید آن عمل خاص تقویت یا تشدید می شود . در غیر این صورت تمایل شبکه عصبی جهت تولید آن عمل خاص تضعیف می شود . یادگیری تقویتی مثل یادگیری با ناظر نیست و این الگوریتم بیشتر برای سیستمهای کنترلی کاربرد دارد .
3. یادگیری بدون ناظر:
در یادگیری بدون ناظر یا یادگیری خود سامانده پارامترهای شبکه عصبی تنها توسط پاسخ سیستم اصلاح و تنظیم می شوند . به عبارتی تنها اطلاعات دریافتی از محیط به شبکه را برداغرهای ورودی تشکیل می دهند. و در مقایسه با مورد بالا (یادگیری با ناظر) بردار جواب مطلوب به شبکه اعمال نمی شود . به عبارتی به شبکه عصبی هیچ نمونه ای از تابعی که قرار است بیاموزد داده نمی شود . در عمل می بینیم که یادگیری با ناظر در مورد شبکه هایی که از تعداد زیادی لایه های نرونی تشکیل شده باشند بسیار کند عمل می کند و در این گونه موارد تلفیق یادگیری با ناظر و بدون ناظر پیشنهاد می گردد .

2-4- زمینه‌ای درموردperceptron
Perceptron های ساده:
یک خانواده ساده از شبکه‌های عصبی مدل perceptron می‌باشد. در یک دسته‌بندی تک‌خروجی، تعداد n ورودی و یک خروجی دارد . با هر ورودی یک ضریب وزنی Wi و با هر خروجی یک مقدار آستانه q مرتبط است.
Perceptron به گونه زیر عمل می‌کند:
ورودی‌های Perceptron یک بردار ورودی از n مقدار حقیقی است.
Perceptron مجموع وزنها را محاسبه می‌کند a= ه Wi.Xi. این مقدار با مقدار آستانه q مقایسه می‌شود. اگر این مقدار ازمقدار آستانه کوچکتر باشد خروجی 0 است و در غیر این صورت 1 است.
قدرت Perceptron:
به وسیله تنظیم اعداد ورودی، وزن آنها و مقدار آستانه می‌توان یک Perceptron برای انجام نسبتا خوب محاسبات گوناگون طراحی کرد. برای مثال توابع منطقی بولین مانند AND ، OR و NOT را می‌توان به وسیله Perceptron طراحی کرد و هر مدار منطقی دیگر را به وسیله گیتهای AND و NOT یا AND و OR طراحی کرد. دسته‌های زیادی از Perceptronها ممکن است خروجی‌های دسته‌های دیگر را به عنوان ورودی خود درخواست کنند.به عنوان مثالی ازPerceptron ها می‌توان یک تشخیص دهنده قالب متن را نام برد. حرفA درآرایه‌ای 5*5 به‌رمز درمی‌آید(encode می‌شود). این متن(حرف) به‌وسیله یک Perceptron با 25 ورودی تشخیص داده می‌شود که در آن وزنها مقادیری برابر با مقادیر عددی داخل آرایه را می‌گیرند و مقدار آســتانه برابر است با: e-25 =q که در آن 0 < e < 1 .
خروجی Perceptron 1 است اگر و فقط اگر ورودی آن از 1 و 1- هایی باشد که عینا در آرایه آمده است.
دنباله‌های Perceptron:
یکی از خصوصیات جالب Perception این است که آنها می‌توانند به وسیله مثالهای مثبت و منفی ( صحیح و اشتباه) برای انجام توابع دسته‌بندی شده مخصوص بارها مرتب شوند.
حال به یک مثال ساده از Perceptron با دو ورودیX1 وX2 ، که تشخیص می‌دهد که کدام‌یک از دو کلاس، عناصر متعلق به خودش را دارد. ما فرض می‌کنیم که این Perceptron دو طرح از کارکترهای چاپ شده از یک متن را بررسی کند، خروجی 1 است اگر و فقط اگر کاراکتر رقم 8 باشد. فرض کنیم که X1 بیانگر تعداد حفره‌های کاراکتر است و X2 درجه راستی سمت چپ کاراکتر را نشان می‌دهد. ما با 4 ورودی .اگر ما perceptron را در اول کار با وزنهایی برابر 0 و مقدار آستانه را برابر 10 مقداردهی کنیم یک رده‌بندی از همه مثالهای منفی انجام داده‌ایم. با قرار دادن رده‌بندی‌های نادرست از 8 ، مقادیر ورودی از مثال 8 با بعضی فاکتورها مثل d جمع می‌شوند و تولیدات جدید با وزنهای متناظر با ایجاد می‌شوند.
فرض کنیم 1= d پس وزن ورودی‌ها از 0 به 1 و 2 رشد پیدا می‌کند. حال در اینجا 5 = a به دست می‌آید که هنوز از مقدار آستانه 10 کوچکتر است. مثال هنوز به رده‌بندی صحیحی نرسیده است واین قدم دنباله باید تکرار شود. بعد از دو قدم وزنها برابر 2 و 4 می‌شوند که مقدار 10 = a را نتیجه می‌دهد که برابر مقدار آستانه است و مثال مثبت از 8 به طور صحیح دسته‌بندی شده است. از آنجا که ضرایب وزنی تغییر کرده بودند لازم است که در همه مثالها رده‌بندی‌ها بازنشان ( Reset ) شوند. این را می‌توان به سادگی دید که مثال B رده‌بندی نادرستی است زیرا با وزنهای 2 و 4 داریم 24 = a ولی این حرف مورد نظر ما نیست، چون این مرحله را پیش رفته‌ایم لازم است که d.1 از W1 و d.2 از W2 کم شود تا رده‌بندی نادرستی از B ثابت شود. به هر حال یک رده‌بندی از 8 را دوباره بیرون می‌دهد.بعدها موقع بروز خطا ما وزنها را برای درست کردن خطاهای رده‌بندی اصلاح می‌کنیم. اگر مثالها دارای خاصیت صحیحی باشند وزنها در مجموعه‌ای از مقادیری که به درستی روی هر ورودی کار می‌کنند قرار می‌گیرند.

قضیه بنیادی دنباله‌ها:

یک خصوصیت قابل توجه perceptron این است که آنها می‌توانند دنباله‌ای از رده ‌بندی صحیح مثالهای مثبت ومنفی باشند.فرض کنیم: X = X+ ب X-
X+ : مجموعه‌‌ای از مثالهای مثبت
X- : مجموعه‌‌ای از مثالهای منفی
گوییم که رشته بی‌کران S x= X1 , X2 , …, Xk ,… یک رشته متوالی(ترتیبی) برای X است در صورتی که هر Xi یک
مثال در X است و هر عنصر از X اغلب به طور نامحدود در Sx رخ می‌دهد(نمایان می‌شود).
فرض کنیم Wk ضریب وزنی در سطح k دنباله باشد. وزن اولیه می‌تواند به صورت قراردادی باشد (برای مثال W1=0 ). حال
رشته استاندارد حاصله، وزنها را به صورت زیر ارتقا می‌دهد:
بسته به استرادژی مورد نظر ممکن است مقادیر C k همگی یکسان باشند یا ممکن است با k تغییر کنند.
قضیه 1):
باشد و یک بردار حل وزنها برای X وجود داشته باشد, در این صورت رویه رشته استاندارد باید بعد از یک تعداد فرض کنیم یک مجموعه از رشته نمونه X و هر رشته ترتیبی برای آن داریم, اگر Ck یک ثابت مثبت مراحل مشخص یک راه‌حل پیدا
کند به طوری که اگر برای بعضی k0 ها داشته باشیم:
WK0 = WK0+1 = WK0+2 = …
که WK0 یک راه‌حل برای X است. {7}

الگوریتم ژنتیک :
الگوریتم ژنتیک که بعنوان یکی از روشهای تصادفی بهینه یابی شناخته شده,  توسط جان هالند در سال 1967 ابداع شده است. بعدها این روش با تلاشهای گلدبرگ 1989, مکان خویش را یافته و امروزه نیز  بواسطه توانایی های خویش , جای مناسبی در میان دیگر روشها دارد. روال بهینه یابی در الگوریتم ژنتیک  براساس یک روند تصادفی- هدایت شده استوار می باشد. این روش , بر مبنای نظریه تکامل تدریجی و ایده های بنیادین داروین پایه گذاری شده است.در این روش , ابتدا برای  تعدادی ثابت که جمعیت نامیده می شود مجموعه ای از پارامترهای هدف بصورت اتفاقی تولید می شود , پس از اجرای برنامه شبیه ساز عددی را که معرف انحراف معیار و یا برازش آن مجموعه از اطلاعات است را به آن عضو از جمعیت مذکور نسبت می دهیم . این عمل را برای تک تک اعضای ایجاد شده تکرار می کنیم , سپس با فراخوانی عملگرهای الگوریتم ژنتیک از جمله لقاح , جهش و انتخاب نسل بعد را شکل می دهیم و این روال تا ارضای معیار همگرایی ادامه داده خواهد شد. هنگامی که لغت تنازع بقا به کار می‌رود اغلب بار ارزشی منفی آن به ذهن می‌آید. شاید همزمان قانون جنگل به ذهن برسد و حکم بقای قوی‌تر!   البته برای آنکه خیالتان راحت شود می‌توانید فکر کنید که همیشه هم قوی‌ترین‌ها برنده نبوده‌اند. مثلا دایناسورها با وجود جثه عظیم و قوی‌تر بودن در طی روندی کاملا طبیعی بازی بقا و ادامه نسل را واگذار کردند در حالی که موجوداتی بسیار ضعیف‌تر از آنها حیات خویش را ادامه دادند. ظاهرا طبیعت بهترین‌ها را تنها بر اساس هیکل انتخاب نمی‌کند! در واقع درست‌تر آنست که بگوییم طبیعت مناسب ترین‌ها (Fittest) را انتخاب می‌کند نه بهترین‌ها.  قانون انتخاب طبیعی بدین صورت است که تنها گونه‌هایی از یک جمعیت ادامه نسل می‌دهند که بهترین خصوصیات را داشته باشند و آنهایی که این خصوصیات را نداشته باشند به تدریج و در طی زمان از بین می‌روند.

بخشی از فهرست مطالب مقاله مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن

 الهام از نورون واقعی :
مدل ریاضی نرون :
کاربردها :
تاریخچه :
شبکه عصبی چیست؟
- شبکه‌های عصبی مصنوعی:
2-1- شبکه‌های عصبی مصنوعی:
2-2- مشخصات مسائل در خور شبکه‌های عصبی مصنوعی Network)    Artificial Neural            
(ANN
2-3- کاربردهای شبکه‌های عصبی مصنوعی ANN :
انواع یادگیری برای شبکه های عصبی:
1. یادگیری با ناظر:
یادگیری تشدیدی:
یادگیری بدون ناظر:
زمینه‌ای درموردperceptron
قدرت Perceptron:
دنباله‌های Perceptron:
الگوریتم ژنتیک چیست؟
شرایط خاتمه الگوریتم های ژنتیک عبارتند از:
ایده اصلی :
الگوریتم :
 روش های نمایش :
روش های انتخاب :
تقاط قوت الگوریتم های ژنتیک:
محدودیتهای GAها :
چند نمونه از کاربرد های الگوریتم های ژنتیک :
تغییر از یک نسل به نسل بعدی(Cross over)   :
جهش(Mutation) :
الگوریتم ژنتیکی ساده :
معرفی الگوریتم :
محدوده کاربرد الگوریتمهای ژنتیکی :
اصول الگوریتم های ژنتیکی :
یک تکنیک کددار کردن برای حلهای ارائه شده:
حلهای کاندید شده :
مرحله انتخاب:
جهش :
جایگزینی و ادامه:
پیکربندی الگوریتم‌های ژنتیکی :
مهمترین پارامترهای پیکربندی الگوریتم ژنتیکی :
الگوریتم ژنتیکی در انتخاب متغیر:
نتیجه‌گیری کلی (الگوریتم ژنتیک):
الگوریتم مورچگان :
کاربردهای الگوریتم مورچگان :
معرفی شبکه های عصبی مصنوعی:
تعریف شبکه های عصبی مصنوعی :
معرفی مدل نرون ساده خطی:
تکنیکهای تعیین پارامترهای نرون خطی :
شبکه های پرسپترون چند لایه :
الگوریتم یادگیری شبکه های پرسپترون ( انتشار به عقب ):
حال بر اساس مطالب گفته شده الگوریتم یادگیری را شرح میدهیم :
‌‌ویژگی‌های یک شبکه‌عصبی‌:


‌‌ مجموعه‌ای از واحدهای پردازشی ساده :
● قاعده‌ای برای انتشار سیگنال‌ها در شبکه‌:
‌●‌ قواعدی برای ترکیب سیگنال‌های ورودی‌:
شبکه عصبی چند لایه :
ایده اصلی شبکههای عصبی :
حال ببینیم که ایده اصلی عملکرد این شبکهها چگونه است؟
تشخیص الگوی صدا با استفاده از شبکه عصبی:
روش استفاده شده برای تشخیص:
شباهت با مغز:
روش کار نرون‌ها :
مدل ریاضی  :
w نیز به تناسب افزایش می‌یابند و هر یک به n عدد افزایش می‌یابند.
پیاده‌سازی‌های الکترونیکی نرون‌های مصنوعی :
عملیات شبکه‌های عصبی - Neural Networks (قسمت دوم):
عملیات شبکه‌های عصبی:
آموزش شبکه‌های عصبی:
آموزش unsupervised یا تطبیقی (Adaptive) :
انواع شبکه‏ها از نظر برگشت پذیری :
1. شبکه‏های پیش‏خور (Feed Forward) :
یک شبکه عصبی جدید و کاربرد آن:
- شکل شبکه :
4- قانون آموزش شبکه :
5- مدلسازی ژنراتور سنکرون دریایی :
5-1  روش مدلسازی دینامیک :
شبکه های عصبی و الگوریتم های ژنتیک در تجارت(1) :
فناوری شبکه عصبی :
فناوری الگوریتم ژنتیک :
مروری بر کاربردهای تجاری :
بازاریابی  :
بانکداری و حوزه های مالی:
سایر حوزه های تجاری :
- نتایج مهم:
معماری شبکه عصبی مصنوعی:
معماری یک لایه :
درختان Hoeffding:
سیستم VFDT :
نتیجه گیری :
منابع :


دانلود با لینک مستقیم


دانلود مقاله مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن

سمینار کارشناسی ارشد عمران معرفی شبکه های عصبی و کاربرد آن در حمل ونقل ریلی

اختصاصی از زد فایل سمینار کارشناسی ارشد عمران معرفی شبکه های عصبی و کاربرد آن در حمل ونقل ریلی دانلود با لینک مستقیم و پر سرعت .

سمینار کارشناسی ارشد عمران معرفی شبکه های عصبی و کاربرد آن در حمل ونقل ریلی


سمینار کارشناسی ارشد عمران معرفی شبکه های عصبی و کاربرد آن در حمل ونقل ریلی

این محصول در قالب پی دی اف و 150 صفحه می باشد.

این سمینار جهت ارائه در مقطع کارشناسی ارشد عمران-راه و ترابری طراحی و تدوین گردیده است. و شامل کلیه موارد مورد نیاز سمینار ارشد این رشته می باشد. نمونه های مشابه این عنوان با قیمت بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی ما این سمینار را با قیمت ناچیز جهت استفاده دانشجویان عزیز در رابطه به منبع اطلاعاتی در اختیار شما قرار می دهند. حق مالکیت معنوی این اثر مربوط به نگارنده است. و فقط جهت استفاده از منابع اطلاعاتی و بالا بردن سطح علمی شما در این سایت قرار گرفته است.


دانلود با لینک مستقیم


سمینار کارشناسی ارشد عمران معرفی شبکه های عصبی و کاربرد آن در حمل ونقل ریلی

پاورپوینت شبکه عصبی کامپیوتری با استفاده حالت ریسک (خطر) و تقویت یادگیری

اختصاصی از زد فایل پاورپوینت شبکه عصبی کامپیوتری با استفاده حالت ریسک (خطر) و تقویت یادگیری دانلود با لینک مستقیم و پر سرعت .

پاورپوینت شبکه عصبی کامپیوتری با استفاده حالت ریسک (خطر) و تقویت یادگیری


پاورپوینت شبکه عصبی کامپیوتری با استفاده حالت ریسک (خطر) و تقویت یادگیری

 

پاورپوینت شبکه عصبی کامپیوتری با استفاده حالت ریسک (خطر) و تقویت یادگیری

29 اسلاید آماده ارائه در قالب پاورپوینت

 

 

شرح مختصر:

حفاظت از شبکه های عصبی کامپیوتری در رابطه زیر ساخت های فن آوری اطلاعات،حوادث مخرب و اتفاقی فعال هستند. با توجه به پیچدگی روبه و با سرعتی که رشد از سیستم های حملات می توانند به طور خودکار راه اندازی شوند اقدامات موثر لازم برای کاهش حادثه در شبکه  انجام می شود. این جا به حفاظت  شبکه کامپیوتری عصبی که می توان با استفاده از تقویت یادگیری  و ارزیابی ریسک برای عمل مطلوب ، یا سیاستی که داده های  شبکه کامپیوتری  در این شرایط بهبودی خود را  بدست می آورند اشاره میشود.

شبکه های عصبی اطلاعات را به روشی مشابه با کاری که مغز انسان انجام می دهد پردازش می کنند. آنها از تعداد زیادی از عناصر پرداز شی(سلول عصبی) که فوق العاده بهم پیوسته اند تشکیل شده است که این عناصر به صورت موازی باهم برای حل یک مسئله مشخص کار می کنند .شبکه های عصبی با مثال کار می کنند و نمی توان آنها را برای انجام یک وظیفه خاص برنامه ریزی کرد مثال ها می بایست با دقت انتخاب شوند در غیر این صورت زمان سودمند، تلف می شود و یا حتی بدتر از این شبکه ممکن است نا درست کار کند. امتیاز شبکه عصبی این است که خودش کشف می کند که چگونه مسئله را حل کند ، عملکرد آن غیر قابل پیش گویی است.

کلمات کلیدی : شبکه های عصبی ، شبکه های حسگر بی سیم، امنیت شبکه های عصبی ، امنیت در شبکه های حسگر بی سیم، محاسابات عصبی، حفاطت از شبکه های عصبی، آزمایش چارپوب معماری عصبی، گسست رویدادها زمانبندی، محیط تصادفی، مد گراف، ارزیابی ریسک، الگوریتم RL ، اکتشاف و همگرایی


دانلود با لینک مستقیم


پاورپوینت شبکه عصبی کامپیوتری با استفاده حالت ریسک (خطر) و تقویت یادگیری