زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پروژه بررسی مبدل های قدرت و کاربرد های آن در (HVDC). doc

اختصاصی از زد فایل پروژه بررسی مبدل های قدرت و کاربرد های آن در (HVDC). doc دانلود با لینک مستقیم و پر سرعت .

پروژه بررسی مبدل های قدرت و کاربرد های آن در (HVDC). doc


پروژه بررسی مبدل های قدرت و کاربرد های آن در (HVDC). doc

 

 

 

 

 

نوع فایل: word

قابل ویرایش 90 صفحه

 

چکیده:

هدف کلی این پروژه بررسی در اصول ساختار مبدل ها و کاربرد مبدلهای قدرت در طراحی HVDC و ادوات FACTS می باشد. در فصل اول این مقاله به مطالعه ساختار HVDC LIGHT و کاربرد آن در HVDC ، طریقه عملکرد، چیدمان و ساختمان کلی این سیستم ها بحث شده است. در ادامه و در فصل دوم مباحث مختصری راجع به اینورترها و یک مبدل چندسطحی پوششی و مدل سازی آن و علل استفاده از این نوع مبدل ها ارائه شده است و شبیه سازی آن با نتایج کلی به تصویر کشیده شده است .

در فصل سوم هم توپولوژی یک مبدل چند سطحی جدید با کاهش برخی از عوامل الکترونیکی مطرح گردیده است.در این فصل در ابتدا مبدل چند سطحی با کاهش تعددی از سوئیچ ها عنوان شده و در ادامه یک مبدل پیشنهادی[5] ارائه گردیده و سپس با معرفی ساختار آن به ترتیب تلفات مختلف آن را با معادلات مربوطه به اثبات رسانیده است.

امید می رود با پیشرفت روز افزون ادوات FACTS و مهندسی قدرت، مبدل های قدرت به ساختاری هرچند بهینه تر در صنعت برق دست یابند اگرچه با موفقیت دانش پژوهان دنیا از جمله محققان ایرانی این حرفه مراحل بسیار موفقیت آمیزی تا این لحظه را پیموده است ولی این صنعت هم چنان راه را برای بهبودی هرچه بیشتر و صرفه بهتر آن هموار می بیند و با ارائه مندی جدیدتر همچنان می شود به بهبود صنعت نیروگاهی و برق کمک کرد. 

 

مقدمه:

معمولا در انتقال توان الکتریکی در زیر دریا از خطوط HVDC  و HVDC LIGHT استفاده می شود.شکل زیر بلوک دیاگرام استفاده از خطوطHVDC درانتقال انرژی الکتریکی توسط کابلهای زیر دریا را نشان میدهد.

 

فهرست مطالب:

مقدمه

فصل اول : معرفی HVDC LIGHT و و کاربرد مبدل ها

اینورتر سه فاز

یکسوکننده

HVDC LIGHT

 کاربردهای مبدل HVDC

چیدمان مبد های HVDC

عملیات مبدل DC

زوایای پل مبدل

معادلات حالت دائم پل مبدل

کنترل وحفاظت

خازن های سری یا مبدلهای DC در پستهای HVDC

حاشیه جریان

 فصل دوم: مبنای کار اینورتر (INVERTER) و مبدل های مالتی لول یا چند سطحی

پیش فصل

دسته بندی اینورترها

کاربرد و طراحی

چکیده

1) مقدمه کاربردی

2) ساختار مبدل چند سطحی

1 اصل مبنا

2 موازنه- قدرت اکتیو

3) استراتژی های کنترل و مدلسازی

1 مدل سازی سیستم

2 الگوریتم کنترل

4) نتایج شبیه سازی

5) نتیجه گیری

  فصل سوم : توپولوژی یک مبدل چندسطحی جدید با کاهش تعدادی از اجزای الکترونیک قدرت

1) مبدل چندسطحی با کاهش تعداد سوئیچ ها

2) توپولوژی [5]

3) ساختارهای بهینه

3-A) ماکزیمم تعداد سطوح ولتاژ با تعداد ثابتی از IGBTs

3-B) ماکزیمم تعداد سطوح ولتاژ با تعداد ثابتی از خازن ها

3-C) حداقل تعدادIGBTs با تعداد ثابتی از سطوح ولتاژ

3-D) حداقل تعداد مدارهای محرک گیت با مقدار ثابتی از سطوح ولتاژ

3-E) حداقل ولتاژهای قطع کننده از سوئیچ ها با تعداد ثابتی از سطوح ولتاژ

3-V) تلفات به وجود آمده در توپولوژی [5]

A .V) محاسبه تلفات رسانایی

B .V) محاسبه تلفات سوئیچینگ

1 .V) اتلاف های خاموش

2 .V) اتلاف های روشن

4) نتایج تجربی

5) نتیجه گیری فصل

فصل چهارم: نتایج

 نتیجه گیری پایانی

 منابع و مراجع

 

منابع و مأخذ:

]1[ محمد مرامی ساران، امیر فرهادی ، "طراحی و ساخت جبران کننده توان راکتیو استاتیکی"   ]2[ "استفادده از روشی نو در اندازه گیری کمیتهای مختلف الکتریکی" ، شانزدهمین کنفرانس برق   ]3[ مصطفی پرنیانی ، شاهین فیلی زاده ، "کاربرد خازن سری کنترل شونده (TCSC) در پایداری و کنترل سیستم های قدرت" ،شانزدهمین کنفرانس برق   ]4[ کتاب" مرجع کاربردی کابل ها و سیم ها" تالیف مهندس محمد باقری   

 [5] Javad Ebrahimi’s scientific paper ,Member of(AUT) Student of IEEE,Dr Gevorg B Gharehapetian Senior member of IEEE & AUT (1997-2003 ) & Ebrahim babaei scientific Member of Tabriz university & IEEE About "Multylevel Converters"   

[6]C.schauder et .al.(1994)."Development of a (_-^+)100 MVAR Static Condenser For voltage control of Transmission systems".IEEE pes summer power meeting.paper no94 SM479-6PWRD.

[7]Mon et .al(1986)."Development of Large Static var Generator Using sellf-Commuteted Inverters for Improving power system stability".IEEE PES Winter Power Metting .paper no .92 WM165-1.

[8]L.H. Walker(1986)." Force commutated reactive power compensator". IEEE Trans.Ind Appl.,vol IA-22,no.6.pp 1091-1104.

[9]Moran et.al .(1986)."Analysis dnd design of a three-phase current source solid –state var campensator ".MEE Trans .Lnd.Appl., vol IA-25,no.2.

[10]Nam S. Choi et .al.(1994)."Modeling and analysis of a static var Compensator using multilevel voltage source inverter". IEEEIIAS ’94 Annual Meeting, pp 946-953

[11]J.S.Lai and F.Z.pena(1996)."Multylevel Converter of A New Breed of Converter" .IEEE Trans. lnd Appl.,vol.32,no,3,pp .356-365.


دانلود با لینک مستقیم


پروژه بررسی مبدل های قدرت و کاربرد های آن در (HVDC). doc

کنترل و بهبود رفتار مبدل های متصل به شبکه در هنگام بروز خطا. doc

اختصاصی از زد فایل کنترل و بهبود رفتار مبدل های متصل به شبکه در هنگام بروز خطا. doc دانلود با لینک مستقیم و پر سرعت .

کنترل و بهبود رفتار مبدل های متصل به شبکه در هنگام بروز خطا. doc


کنترل و بهبود رفتار مبدل های متصل به شبکه در هنگام بروز خطا. doc

 

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 115 صفحه

 

چکیده:

زمانی که خطایی در شبکه رخ می دهد، اتصال منبع انرژی تجدید پذیر به شبکه دارای اثرات منفی بر روی سیستم فتوولتائیک می شود و عملکرد اینورتر فتوولتائیک را دچار مشکل می کند. شدیدترین علت شرایط غیر طبیعی در شبکه برق مصرفی خطای اتصال کوتاه است که بوسیله برخی از شرایط آب و هوایی مانند رعد و برق و یا با استارت موتورهای بزرگ تولید می شود و باعث فلش ولتاژ می شود و پس از یک دوره کوتاه زمانی ولتاژ بهبود می یابد. فلش ولتاژ معمولا ً منجر به اختلال در عملکرد مبدل های الکترونیک قدرت متصل به شبکه برق می شود. مطالعه حاضر تلاش در جهت جلوگیری از اختلال در عملکرد مبدل های الکترونیک قدرت و بهبود عملکرد آنها تحت فلش ولتاژ می باشد.

در این مطالعه سعی شده است با بررسی ساختارهای کنترلی مختلف مبدل های متصل به شبکه برای فن آوری فتوولتائیک و ارائه روش کنترلی و ساختار مناسب عملکرد اینورتر متصل به شبکه را بهبود بخشید.

 

مقدمه:

کاهش منابع سنتی انرژی و آلودگی محیط زیست، از دلایلی هستند که به شکوفایی انرژی‌های تجدید پذیر منجر شده‌اند. همچنین به دلیل مسایل زیست محیطی و رو به اتمام بودن سوخت‌های فسیلی و به دلیل نیاز روز افزون به انرژی الکتریکی استفاده از منابع تجدیدپذیر متصل به شبکه عمومی به طور قابل توجهی رو به افزایش است. این وضعیت توسط توسعه عظیم در حیطه الکترونیک قدرت مهیا شده است که مبدل منبع ولتاژ (VSC) یکی از رایج‌ترین مبدل‌های امروزه الکترونیک قدرت به حساب می‌آید. در ادامه کاربردهای اصلی آنها و طرح کلی سیستم کنترل VSCبه طور خلاصه توضیح داده شده و انگیزه‌ها و اهداف این پایان نامه معرفی شده است.

در میان این منابع تجدیدپذیر که از مبدل منبع ولتاژ استفاده می‌کنند، فن آوری فتوولتائیک نقش مهمی را در آینده تولید برق ایفا می‌کند. برخی استانداردهای بین المللی در تنظیم رفتار منابع تجدیدپذیر متصل به شبکه وجود دارد. مطابق با این استانداردها  منابع فتوولتائیک باید با قابلیت اطمینان بالا در فلش ولتاژ، متصل به شبکه باقی بمانند. ساختارهایی برای رسیدن به این هدف ارائه شده اند وهر کدام نیز دارای معایبی می‌باشد.

در این مطالعه سعی شده است با بررسی ساختارهای کنترلی مختلف مبدل‌های متصل به شبکه برای فن آوری فتوولتائیک و ارائه روش کنترلی و ساختار مناسب عملکرد اینورتر متصل به شبکه را بهبود بخشید.

 

فهرست مطالب:

فصل اول: مقدمه

1-1 معرفی

1-1-1 پیامدهای توسعه الکترونیک قدرت

1-1-2 مدل تولید انرژی

1-1-3 منبع ولتاژ مبدل (VSC)

1-2 مبدل منبع ولتاژ متصل به شبکه

1-2-1 کاربردها

1-2-1-1 فیلتر اکتیو موازی(APF)

1-2-1-2 بازیاب دینامیکی ولتاژ(DVR)

1-2-1-3 جبران سنکرون استاتیک(STATCOM)

1-2-1-4 کنترل کننده توان یکپارچه(UPFC)

1-2-1-5 انتقال جریان مستقیم ولتاژ بالا(HVDC).

1-2-1-6 انرژی‌های تجدیدپذیر

1-2-1-6-1 اهمیت انرژی‌های نو و دلیل گرایش به آن‌ها:

1-3 اهداف پایان‌نامه

فصل دوم: سنکرونیزاسیون با شبکه

2-1 مقدمه

2-2 روش‌های سنکرونیزه کردن با شبکه برای سیستم‌های تک فاز

2-2-1 سنکرونیزه کردن  شبکه با استفاده از تحلیل فوریه

2-2-2 سنکرونیزه کردن با شبکه با استفاده از یک حلقه قفل فاز

2-2-2-1 تشخیص فاز مبتنی بر سیگنال متعامد

2-2-2-2 PLLهای بر اساس فیلترینگ تطبیقی

2-2-2-3 فیلتر تطبیقی مرتبه دوم

2-2-2-4 انتگرالگیر تعمیمی مرتبه دوم

2-2-2-5 حلقه قفل فرکانس SOGI

2-3 سنکرونیزاسیون با شبکه در مبدل‌های قدرت سه فاز

2-3-2 FLLانتگرالگیر تعمیمی مرتبه دوم دوبل

2-3-2-1 ساختار DSOGI

فصل سوم: طرح کنترلی پیشنهاد شده

3-1 مقدمه

3-2 اینورتر متصل به شبکه تحت فلش ولتاژ

3-2 فیلترینگ

3-2-1 توپولوژی فیلتر

3-3 مشخصات نقطه PCC

3-4 طبقه بندی فلش و تعیین ویژگی‌های آن

3-4-1 کد شبکه مورد نیاز تحت فلش ولتاژ

3-4-2 تزریق جریان هنگام فلش ولتاژ

3-4-3 طرح کنترل پیشنهادی پشتیبانی از ولتاژ

3-4-3-1 مقادیر مرجع ولتاژ PCC

3-4-3-2 استخراج پارامترهایQkq

3-4-3-3طرح پیشنهادی پشتیبانی ولتاژ

3-4-3-4استراتژی‌های کنترلی

فصل چهارم: شبیه‌سازی

4-1فلش نوعIII

4-2فلش نوعII

4-3فلش نوعI

فصل پنجم: نتایج و پیشنهادات

5-1 نتیجه‌گیری

5-2پیشنهادات

مراجع

 

فهرست شکل ها:

شکل1.1 مصرف انرژی جهانی

شکل 2.1 تولید پراکنده و تولید سنتی

شکل 3.1 بلوک دیاگرام یک APF شنت و طرح کنترلی کلی آن

شکل 4.1 بلوک دیاگرام یک DVR و طرح کنترلی آن

شکل 5.1 بلوک دیاگرام یک STATCOM و طرح کنترلی آن

شکل 6.1 بلوک دیاگرام یک UPFC و طرح کنترلی آن

شکل 7.1 بلوک دیاگرام یک VSC-HVDC و طرح کنترلی آن

شکل 1-8: سهم هر یک از انواع نیروگاهها در تولید انرژی الکتریکی جهان در سال 2002.

شکل 2-1: PD بر اساس QSG و تبدیل پارک

شکل 2-2: نمایش برداری سیگنال‌های خروجی QSG

شکل 2-3: سیستم لغو نویز تطبیقی (ANC)

شکل2-4: دیاگرام الگوریتم LMS در سیستم ANC

شکل2-5 دیاگرام یک فیلتر تطبیقی مرتبه دو

شکل 2-6: یک فیلتر مرتبه دو بر پایه QSG

شکل2-7: الف) AFمرتبه دو بر اساس یک GIب) AFمرتبه دو بر اساس یک SOGI(SOGI-QSG)

شکل 2-8: دیاگرام SOGI-FLL

شکل 2-9: بردار ولتاژ سه فاز ایده‌آل

شکل 2-10: ساختار DSOGI

شکل 3-1 نمودارDGS متصل به شبکه

شکل 3-2 : فیلتر LCL (فیلتر پایین گذر) و بانک فیلتر LC

شکل 3-3 : مبدل منبع ولتاژ

شکل 3-4 مدل شبکه با بار و ژنراتور متصل به PCC

شکل 3-5 اتصال کوتاه در PCC

شکل 3-7: طبقه بندی فلش بر اساس زاویه فاز توالیδ. حروف بزرگ، نوع فلش و حروف کوچک، فازهای مورد نظر را نشان می‌دهد.

شکل 3-8 : نمونه‌هایی از فلش ولتاژ با ΔV<ΔVboundaries . (a) : نوع I، (b) : نوع II، (c) : نوع III. سمت چپ ولتاژهای نقطه PCC در طول فلش ولتاژ و در سمت راست مقادیر فاز ولتاژ پیشنهادی

شکل 3-9 : نمونه‌هایی از فلش ولتاژ با ΔV>ΔVboundaries . (a) : نوع I، (b) : نوع II، (c) : نوع III. سمت چپ ولتاژهای نقطه PCC در طول فلش ولتاژ و در سمت راست مقادیر فاز ولتاژ پیشنهادی

شکل 3-10 : بلوک دیاگرام طرح کنترلی پشتیبانی ولتاژ

شکل 4-1: ولتاژفازPCCرا قبل،درحینوبعدازیکفلش ولتاژنوعIII

شکل 4-2: ولتاژهای توالی مثبت ومنفی (ولتاژ PCCبه رنگ سبز و ولتاژ شبکه به رنگ قرمز)

شکل 4-3 : توان راکتیو مرجع محاسبه شده در طی فلش ولتاژ نوع III

شکل 4-4 : فلش نوع III، الف) ولتاژنقطه PCCو ب)جریاناینورتر

شکل 4-5 : ولتاژهای PCCرادرطولیک فلشنوعIIباΔV<ΔVboundaries

شکل 4-6: ولتاژهای توالی مثبت و منفی (ولتاژ PCC به رنگ سبز و ولتاژ شبکه به رنگ قرمز) در فلش ولتاژ نوع II باΔV<ΔVboundaries

شکل 4-7 : توان راکتیو مرجع محاسبه شده در طی فلش ولتاژ نوع II باΔV<ΔVboundaries

شکل 4-8 : فلش نوع II باΔV<ΔVboundaries، الف) ولتاژنقطه PCCو ب)جریاناینورتر

شکل 4-9 : ولتاژفازPCCرا درطول یک فلش ولتاژنوعII،باΔV>ΔVboundaries

شکل 4-10: ولتاژهای توالی مثبت و منفی (ولتاژ PCCبه رنگ سبز و ولتاژ شبکه به رنگ قرمز) در فلش ولتاژ نوع II با ΔV>ΔVboundaries

شکل 4-11 : توانراکتیومرجعمحاسبهشده و پارامتر تعادل Kqدر طی فلش ولتاژ نوع IIباΔV>ΔVboundaries

شکل 4-12 : فلش نوع II باΔV>ΔVboundaries، الف) ولتاژنقطه PCC و ب)جریاناینورتر

شکل 4-13 : ولتاژفازPCCرا درطولیکفلش ولتاژنوعI،باΔV<ΔVboundaries

شکل 4-14: ولتاژهای توالی مثبت و منفی (ولتاژ PCCبه رنگ سبز و ولتاژ شبکه به رنگ قرمز) در فلش ولتاژ نوع IباΔV<ΔVboundaries

شکل 4-15 : توان راکتیو مرجع محاسبه شده در طی فلش ولتاژ نوع I باΔV<ΔVboundaries

شکل 4-16 : فلش نوع I باΔV<ΔVboundaries، الف) ولتاژنقطه PCCو ب)جریان اینورتر

 

فهرست جدول ها:

جدول 3-1 مقادیر نمونه اتصال کوتاه

جدول 3-2 مقادیر حداکثر تولید پراکنده بر حسب تابعی از سطح ولتاژ

جدول 4-1: پارامترهای سیستم شبیه‌سازی شده

 

منابع و مأخذ:

[1]        A.Zervos and C.Kjaer, "Wind energy scenarios up to 2030," European Wind Energy Association2008.

[2]        E.Carroll, High power active devices: ABB, 2005.

[3]        R. TEODORESCU, et al., Grid Converters for Photovoltaic and Wind Power Systems: Wiley-IEEE, 2011.

[4]        S.Clifford, "Delivering energy and climate solutions," EWEA 2007 annual report2007.

[5]        B. Wu, High-Power Converters and AC Drives: Wiley-IEEE Press, 2006.

[6]        F. Blaabjerg, et al., "Overview of control and grid synchronization for distributed power generation systems," IEEE Trans. Ind. Electron, vol. 53, pp. 1398-1409, 2006.

[7]        F. Blaabjerg, et al., "Power electronics as efficient interface in dispersed power generation systems," IEEE Trans. Power Electronics, vol. 19, pp. 1184-1194, 2004.

[8]        S. B. Kjaer, et al., "A review of single-phase grid connected inverters for photovoltaic modules," IEEE Trans. Ind. Appl, vol. 41, pp. 1292-1306, 2005.

[9]        J. H. Enslin and P. J. Heskes, "Harmonic interaction between a large number of distributed power inverters and the distribution network," IEEE Trans. Power Electronics, vol. 19, pp. 1586-1593, 2004.

[10]      M. H. J. Bollen, Understanding Power Quality Problems: Voltage Sags and Interruptions. New York, USA: IEEE Press, 2000.

[11]      M. H. J. Bollen, "Algorithms for characterizing measured three-phase unbalanced voltage dips," IEEE Trans. Power Delivery, vol. 18, pp. 937-944, 2003.

[12]      M. Mohseni, et al., "Impacts of voltage sags on DFIG-based wind turbines considering phase-angle jump, voltage recovery, and sagparameters," IEEE Trans. Power Electronics, vol. 26, pp. 1587-1598, 2011.

[13]      G. Yalcinkaya, et al., "Characterization of voltage sags in industrial distribution systems," IEEE Trans. Ind. Appl, vol. 34, pp. 682-688, 1998.

[14]      I. Standard, "Characteristics of the utility interface for photovoltaic systems,"  vol. 61727-2004, ed, 2004.

[15]      I. Standard, "IEEE Application Guide for IEEE Std 1547," in IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems vol. 1547.2-2008, ed, 2009.

[16]      D. M. Vilathgamuwa, et al., "Protection of microgrids during utility voltage sags," IEEE Trans. Ind. Electron, vol. 53, pp. 1427-1436, 2006.

[17]      J. C. Vasquez, et al., "Voltage support provided by a droop-controlled multifunctional inverter," IEEE Trans. Ind. Electron, vol. 56, pp. 4510-4519, 2009.

[18]      B. H. L. S. S. Choi and D. M. Vilathgamuwa, "Dynamic voltage restoration with minimum energy injection," IEEE Trans. Power Systems, vol. 15, pp. 51-57, 2000.

[19]      J. G. Nielsen and F. Blaabjerg, "Control strategies for dynamic voltage restorer compensating voltage sags with phase jump," in 16th Annu. IEEE Appl. Power Electron. Conf, 2001, pp. 1267-1273.

[20]      P. T. Cheng, et al., "Design and implementation of a series voltage sag compensator under practical utility conditions," IEEE Trans. Ind. Appl, vol. 39, pp. 844-853, 2003.

[21]      J. G. Nielsen and F. Blaabjerg, "A detailed comparison of system topologies for dynamic voltage restorers," IEEE Trans. Ind. Appl., vol. 41, pp. 1272-1280, 2005.

[22]      D. M. Vilathgamuwa, et al., "A novel technique to compensate voltage sags inmultiline distribution system-The interline dynamic voltage restorer," IEEE Trans. Ind. Electron, vol. 53, pp. 1603-1611, 2006.

[23]      C. Wessels, et al., "Fault ride-through of aDFIG wind turbine using a dynamic voltage restorer during symmetrical and asymmetrical grid faults," IEEE Trans. Power Electronics, vol. 26, pp. 807-815, 2011.

[24]      S. Subramanian and M. K. Mishra, "Interphase AC-AC topology for voltage sag supporter," IEEE Trans. Power Electron., vol. 25, pp. 514-518, 2010.

[25]      Y. W. Li, et al., "Microgrid power quality enhancement using a three-phase four-wire grid-interfacing compensator," IEEE Trans. Ind. Appl., vol. 41, pp. 1707-1719, 2005.

[26]      P. Rodriguez, et al., "Flexible active power control of distributed power generation systems during grid faults," IEEE Trans. Ind. Electron., vol. 54, pp. 2583- 2592, 2007.

[27]      M. Castilla, et al., "Grid fault control scheme for three-phase photovoltaic inverters with adjustable power quality characteristics," IEEE Trans. Ind. Electron, vol. 25, pp. 2930-2940, 2010.

[28]      J. Miret, et al., "Control scheme for photovoltaic three-phase inverters to minimize peak currents during unbalanced grid-voltage sags," IEEE Trans. PowerElectron., vol. 27, pp. 4262-4271, 2012.

[29]      A. Junyent-Ferre, et al., "Current control reference calculation issues for the operation of renewable source grid interface VSCs under unbalanced voltage sags," IEEE Trans. Power Electron., vol. 26, pp. 3744-3753, 2011.

[30]      A. Yazdani and R. Iravani, Voltage-Sourced Converters in Power Systems: IEEE/John-Wiley, 2010.

[31]      V. Khadkikar and A. Chandra, "UPQC-S:Anovel concept of simultaneous voltage sag/swell and load reactive power compensations utilizing series inverter of UPQC," IEEE Trans. Power Electron., vol. 26, pp. 2414- 2425, 2011.

[32]      T.-L. Lee, et al., "D-STATCOM with positivesequence admittance and negative-sequence conductance to mitigate voltage fluctuations in high-level penetration of distributed generation systems," IEEE Trans. Ind. Electron., vol. 60, pp. 1417-1428, 2013.

[33]      Y. A.-R. I. Mohamed and E. F. El-Saadany, "A control scheme for PWM voltage-source distributed-generation inverters for fast load-voltage regulation and effective mitigation of unbalanced voltage disturbances," IEEE Trans. Ind. Electron., vol. 55, pp. 2072-2084, 2008.

[34]      F.Wang, et al., "Grid-interfacing converter systemswith enhanced voltage quality formicrogrid application-concept and implementation," IEEE Trans. Power Electron., vol. 26, pp. 3501-3513, 2011.

[35]      I. Etxeberria-Otadui, et al., "New optimized PWM VSC control structures and strategies under unbalanced voltage transients," IEEE Trans. Ind. Electron., vol. 54, pp. 2902-2914, 2007.

[36]      F. Wang, et al., "Pliant active and reactive power control for grid-interactive converters under unbalanced voltage dips," IEEE Trans. Power Electron., vol. 26, pp. 1511-1521, 2011.

[37]      A. Camacho, et al., "Flexible voltage support control for three phase distributed generation inverters under grid fault," IEEE Trans. Ind. Electron., vol. 60, pp. 1429-1441, 2013.

[38]      J. Miret, et al., "Control Scheme With Voltage Support Capability for Distributed Generation Inverters Under Voltage Sags," IEEE Trans. Power Electron., vol. 28, pp. 5252-5262, 2013.

[39]      H.Akagi, et al., Instantaneous power theory and applications to power conditioning: John Wiley & Sons, 2007.

[40]      D.G.Holmes, et al., "Optimized design of stationary frame three phase ac current regulators," IEEE Trans. Power Electronics, vol. 24, pp. 2417-2426, 2009.

[41]      P.Mattavelli, et al., "Dynamic improvement in UPS by means of control delay minimization," in Industry Applications Conference, 2004, pp. 843-849.

[42]      B.Chen and Y.Hsu, "A minimal harmonic controller for a STATCOM," IEEE Trans. Industrial Electronics, vol. 55, pp. 655-664, 2008.

[43]      T.M.Rowan and R.J.Kerkman, "A new synchronous current regulator and an analysis of current-regulated PWM inverters," IEEE Trans. Industry Applications, vol. IA-22, pp. 678-690, 1986.

[44]      M.P.Kazmierkowski and L.Malesani, "Current control techniques for three-phase voltagesource PWM converters: a survey," IEEE Trans. Industrial Electronics, vol. 45, pp. 691-703, 1998.

[45]      S.Cóbreces, "Optimization and analysis of the current control loop of VSCs connected to uncertain grids through LCL filters," PhD University of Alcala, Spain, 2009.

[46]      A. R. Monter, "CONTRIBUTIONS TO CASCADE LINEAR CONTROL STRATEGIES APPLIED TO GRID-CONNECTED VOLTAGE-SOURCE CONVERTERS," PH.D, university of alcala, 2013.

[47]      A. V. D. Meulen and J.Maurin, "Current source inverter vs. voltage source inverter topology " 2010.

[48]      M.Lindgren, "Modeling and control of voltage source converters connected to the grid," PhD, Chalmers Umiversity of Technology, Sweden, 1998.

[49]      L.Gyugyi and E.C.Strycula., "Active ac power filters," in IEEE IIAS annual meeting, 1976, pp. 529-535.

[50]      A.Rodríguez, et al., "Comparison of current controllers based on repetitive-based control and second order generalized integrators for active power filters," in 35th Annual Conference of Industrial Electronics (IECON’09), 2009, pp. 3223-3228.

[51]      A.Rodríguez, et al., "Analysis of repetitivebased controllers for selective harmonic compensation in active power filters," in 36th Annual Conference of Industrial Electronics (IECON’10), 2010, pp. 2013-2018.

[52]      H.Akagi, "Active harmonic filters," in Proc.of the IEEE, 2005, pp. 2128-2141.

[53]      E.Özdemir, et al., "Active power filter for power compensation under nonideal mains voltages," in IEEE MED, 2003.

[54]      J.G.Nielsen, et al., "Control and testing of a dynamic voltage restorer (DVR) at medium voltage leve," IEEE Trans. Power Electronics, vol. 19, pp. 806-813, 2004.

[55]      J.Roldán-Pérez, et al., "Adaptive repetitive controller for athree-phase dynamic voltage restorer," in International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), 2011, pp. 1-6.

[56]      M.Vilathgamuwa, et al., "Control of energy optimized dynamic voltage restorer," in 25th Annual Conference of Industrial Electronics (IECON’99), 1999, pp. 873-878.

[57]      N.G.Hingorani, "FACTS - Flexible AC transmission system," in International Conference on AC and DC Power Transmission, 1991, pp. 1-7.

[58]      N.Hingorani and L.Gyugyi, Understanding FACTS: concepts and technology of flexible AC transmission systems vol. 1: Mohamed El-Hawary, 2000.

[59]      R.Mihalic, et al., "Improvement of transient stability by insertion of FACTS devices," IEEE Trans. Power Delivery, vol. 11, pp. 521-525, 1996.

[60]      J.F.Gronquist, et al., "Power oscillation damping control strategies for FACTS devices using locally measurable quantities," IEEE Trans. Power Systems, vol. 10, pp. 1598-1605, 1995.

[61]      C.Schauder, et al., "Operation of ±100 MVAr TVA STATCON," IEEE Trans. Power Delivery, vol. 12, pp. 1805-1811, 1997.

[62]      M.Noroozian, et al., "Use of UPFC for optimal power flow control," IEEE Trans. Power Deliveryvol. 12, pp. 1629-1634, 1997.

[63]      M.P.Bahrman and B.K.Johnson, "The ABCs of HVDC transmission technologies," IEEE Power and Energy Magazine, vol. 5, pp. 32-44, 2007.

[64]      "International Energy Outlook 2005," Energy Information Administration (EIA).

[65]      M. R. Patel, Wind and Solar Power Systems: CRC Press LLC, 1999.

[66]      S. R. Bull, "Renewable Energy Today and Tomorrow," inProceedings of IEEE, August 2001, pp. 1216-1221.

[67]      "Trends in photovoltaic applications: Survey report of selected IEA countries between 1992 and 2004," International Energy Agency Photovoltaics Power Systems Programme (IEA PVPS)September 2005.

[68]      L. Asiminoaei, et al., "A Digital Controlled PV-Inverter with Grid Impedance Estimation for ENS Detection," IEEE Transactions on Power Electronics, vol. 20, pp. 1480-1490, November 2005.

[69]      M. Dolen and R. D. Lorenz, "Industrially Useful Means for Decomposition and Differentiation of Harmonic Components of PeriodicWaveforms," in Proceedings of the IEEE Industry Applications Society Annual Meeting, 2000, pp. 1016-1023.

[70]      M. M. Begovic, et al., "Frequency Tracking in Power Networks in the Presence of Harmonics," IEEE Transactions on Power Delivery, vol. 8, pp. 480-486, April 1993.

[71]      D. Nedeljkovic, et al., "Synchronization of Active Power Filter Current Reference to the Network’. IEEE Transactions on Industrial Electronics," vol. 46, pp. 333-339, April 1999.

[72]      J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine Calculation of Complex Fourier Series," Mathematical Computations, vol. 19, 1965.

[73]      R. W. Wall, "Simple Methods for Detecting Zero Crossing," in Industrial Electronics Society, IECON ’03. The 29th Annual Conference of the IEEE, November 2003, pp. 2477-2481.

[74]      B. P. McGrath, et al., "Improved Power Converter Line Synchronisation Using an Adaptive Discrete Fourier Transform (DFT)," in Power Electronics Specialists Conference, 2002. pesc. 02. IEEE 33rd Annual, 2002, pp. 821-826.

[75]      S. S. Haykin, Adaptive Filter Theory. Upper Saddle River. NJ: Prentice Hall, 2002.

[76]      R. Teodorescu, et al., "Proportional-Resonant Controllers and Filters for Grid-Connected Voltage-Source Converters," presented at the Electric Power Applications, IEE Proceedings, 2006.

[77]      D. N. Zmood and D. G. Holmes, "Stationary Frame Current Regulation of PWMInverterswith Zero Steady-State Error," IEEE Transactions on Power Electronics, vol. 18, pp. 814-822, May 2003.

[78]      M. Padmanabhan, et al., Feedback-Based Orthogonal Digital Filters: Theory, Applications, and Implementation. Norwell: Kluwer Academic Publishers, 1996.

[79]      X. Yuan, et al., "Stationary Frame Generalized Integrators for Current Control of Active Power Filters with Zero Steady-State Error for Current Harmonics of Concern under Unbalanced and Distorted Operating Conditions," IEEE Transactions on Industrial Applications, vol. 38, pp. 523-532, March/April 2002.

[80]      M. Mojiri and A. Bakhshai, "An Adaptive Notch Filter for Frequency Estimation of a Periodic Signal," IEEE Transactions on Automatic Control, vol. 49, pp. 314-318, February 2004.

[81]      M. Mojiri, et al., "Time Domain Signal Analysis Using Adaptive Notch Filter," IEEE Transactions on Signal Processing, vol. 55, pp. 85-93, January 2007.

[82]      P. Rodriguez, et al., "New Positive-Sequence Voltage Detector for Grid Synchronization of Power Converters under Faulty Grid Conditions," in Proceedings of the IEEE Power Electronics Special Conference (PESC’06), June 2006, pp. 1-7.

[83]      P. Rodriguez, et al., "Grid Synchronization of Power Converters Using Multiple Second Order Generalized Integrators," in Proceedings of the IEEE Industrial Electronics Conference (IECON’08), November 2008, pp. 755-760.

[84]      R. C. Dugan, et al., Electrical Power Systems Quality vol. 2nd edition. New York: McGraw-Hill, 2002.

[85]      M. Cichowlas, et al., "Active Filtering Function of Three-Phase PWMBoost Rectifier under Different Line Voltage Conditions," IEEE Transactions on Industrial Electronics, vol. 52, pp. 410-419, April 2005.

[86]      R. Teodorescu and F. Blaabjerg, "Flexible Control of SmallWind Turbines with Grid Failure DetectionOperating in Stand-alone and Grid-Connected Mode," IEEE Transactions on Power Electronics, vol. 19, pp. 1323-1332, September 2004.

[87]      J. G. Nielsen, et al., "Control and Testing of a Dynamic Voltage Restorer (DVR) at Medium Voltage Level," IEEE Transactions on Power Electronics, vol. 19, pp. 806-813, May 2004.

[88]      P. Mattavelli, "A Closed-Loop Selective Harmonic Compensation for Active Filters," IEEE Transactions on Industry Applications, vol. 37, pp. 81-89, January/February 2001.

[89]      P. Rodriguez, et al., "Advanced Grid Synchronization System for Power Converters under Unbalanced and Distorted Operating Conditions," presented at the IEEE Industrial Electronics (IECON 2006), 6-10 November 2006.

[90]      P. Rodriguez, et al., "Multi-Resonant Frequency-Locked Loop forGrid Synchronization of Power Converters underDistorted Grid Conditions," IEEE Transactions on Industrial Electronics, vol. 1, p. 99, April 2010.

[91]      P. Anderson, Analysis of Faulted Power Systems: IEEE Power, Energy, and Industry Applications, 2009.

[92]      W. V. Lyon, Application of the Method of Symmetrical Components. New York: McGraw-Hill, 1937.

[93]      A. Rockhill, et al., "Grid Filter Design for a Multi-Megawatt Medium-Voltage Voltage Source Inverter," IEEE Transactions on Industrial Electronics, 2011.

[94]      J. Soens, "Impact of Wind Energy in a Future Power Grid," Ph.D, Katholieke Universiteit Leuven, Leuven, Belgium, 2005.

[95]      P. Kundur, Power System Stability and Control: Electric Power Research Institute EPRI, 1994.

[96]      V. Ignatova, et al., "Space vector method for voltage dips and swells analysis," IEEE Trans. Power Delivery, vol. 24, pp. 2054-2061, Oct. 2009.


دانلود با لینک مستقیم


کنترل و بهبود رفتار مبدل های متصل به شبکه در هنگام بروز خطا. doc

متن ترجمه شده مقاله مبدل DC-DC جدا شده ی مبنی بر منبع Y افزایش ولتاژ بالا با جریان ورودی مداوم

اختصاصی از زد فایل متن ترجمه شده مقاله مبدل DC-DC جدا شده ی مبنی بر منبع Y افزایش ولتاژ بالا با جریان ورودی مداوم دانلود با لینک مستقیم و پر سرعت .

متن ترجمه شده مقاله مبدل DC-DC جدا شده ی مبنی بر منبع Y افزایش ولتاژ بالا با جریان ورودی مداوم


متن ترجمه شده مقاله مبدل DC-DC جدا شده ی مبنی بر منبع Y افزایش ولتاژ بالا با جریان ورودی مداوم

 

 

 

 

 

عنوان ترجمه:

High Voltage Gain V-Source Based Isolated DC-DC Converter With Continuous Input Current

نوع فایل متن انگلیسی: pdf

تعداد صفحه: 5

 

برای دانلود متن انگلیسی اینجا کلیک کنید.

 

 

عنوان ترجمه شده فارسی:

مبدل DC-DC جدا شده ی مبنی بر منبع Y افزایش ولتاژ بالا با جریان ورودی مداوم

نوع فایل ترجمه شده فارسی: word

قابل ویرایش 5 صفحه

 

قسمتی از متن ترجمه شده:

چکیده

در این مقاله مبدل DC-DC جدا شده ی افزایش ولتاژ بالا جدیدی پیشنهاد شده است. مبدل پیشنهادی از شبکه ی مقاومت ظاهری منبع Y بهبود یافته با جریان ورودی مداوم استفاده می کند. افزایش ولتاژ خیلی بالا، جدایی الکتریکی و جریان ورودی مداوم از ویژگیهای رایج مبدل پیشنهادی هستند که باعی می شوند آن برای کاربرد با منابع انرژی تجدید پذیر مانند سلول سوخت و سیستمهای فتوولتاژی مفید باشد. برخلاف دیگر مبدلهای مبنی بر منبع مقاوت ظاهری دیگر، این مبدل می تواند با چرخه ی کار پایین برای همان افزایش ولتاژ کار کند. در این مقاله اصول عملکرد و تحلیل مبدل پیشنهادی توصیف شده اند. شبیه سازیهای کامپیوتری برای نشان دادن عملکرد مبدل پیشنهادی استفاده شده اند و معادلات محاسباتی حاصل را تایید می کنند.


دانلود با لینک مستقیم


متن ترجمه شده مقاله مبدل DC-DC جدا شده ی مبنی بر منبع Y افزایش ولتاژ بالا با جریان ورودی مداوم

تحقیق بسیار کامل در مورد مبدل های حرارتی

اختصاصی از زد فایل تحقیق بسیار کامل در مورد مبدل های حرارتی دانلود با لینک مستقیم و پر سرعت .

تحقیق بسیار کامل در مورد مبدل های حرارتی


تحقیق بسیار کامل در مورد مبدل های حرارتی

 

تحقیق بسیار کامل در مورد مبدل های حرارتی

149 صفحه در قالب word

 

 

 

فهرست مطالب 

پیشگفتار 3

دسته بندی مبدل های حرارتی. 5

بر اساس نوع و سطح تماس سیال سرد و گرم 5

بر اساس جهت جریان سیال سرد و گرم 6

بر اساس مکانیزم انتقال حرارت بین سیال سرد و گرم 8

بر اساس ساختمان مکانیکی و ساختار مبدل ها 9

اصول طراحی مبدل های حرارتی. 20

1- تعیین مشخصات فرآیند و طراحی. 24

2- طراحی حرارتی و هیدرولیکی. 28

3- طراحی مکانیکی. 33

4- ملاحظات مربوط به تولید و تخمین  هزینه ها 37

5-  فاکتورهای لازم برای  سبک و سنگین کردن. 39

6-  طراحی بهینه 40

7- سایر ملاحظات.. 40

نرم افزار HTFS ( شبیه سازی و طراحی مبدل های حرارتی ) 41

TASC، طراحی حرارتی ، بررسی عملکرد و شبیه سازی مبدلهای پوسته و لوله 42

FIHR، شبیه سازی کوره ها با سوخت گاز و مایع. 42

MUSE، شبیه سازی مبدلهای صفحه ای پره دار. 43

TICP، محاسبه عایقکاری حرارتی. 43

PIPE، طراحی، پیش بینی و بررسی عملکرد خطوط لوله 44

ACOL، شبیه سازی و طراحی مبدلهای حرارتی هواخنک. 44

FRAN، بررسی و شبیه سازی مبدلهای نیروگاهی. 45

TASC، طراحی حرارتی ، بررسی و شبیه سازی مبدلهای حرارتی پوسته و لوله 46

توانایی ها 46

کاربرد در فرآیند 47

مشخصات فنی و توانایی ها 48

خواص فیزیکی. 49

بررسی ارتعاش ناشی از جریان. 49

خروجی. 50

ACOL، شبیه سازی و طراحی مبدلهای حرارتی هواخنک. 52

طراحی. 52

کاربرد در فرآیند 53

مشخصات فنی و توانایی. 54

نتایج خروجی. 56

PIPESYS ، شبیه سازی خطوط لوله 58

امکانات و توانایی ها 59

نمونه هایی از کاربرد PIPESYS در عمل. 60

نرم افزار Aspen B-jac. 61

آشنایی با نرم افزار Aspen Hetran. 63

نحوه کار نرم افزار  Hetranدر حالت طراحی. 65

محیط نرم افزار Aspen Hetran. 72

تعریف مساله ( Problem Definition ) 73

اطلاعات خواص فیزیکی ( Physical property data ) 83

ساختار مبدل ( Exchanger Geometry ) 94

داده های طراحی (  Design Data) 106

تنظیمات برنامه ( Program Options ) 113

نتایج ( Results ) 117

خلاصه وضعیت طراحی. 118

خلاصه وضعیت حرارتی. 121

خلاصه وضعیت مکانیکی. 125

جزئیات محاسبه ( Calculation Details ) 127

آشنایی با نرم افزار Aerotran. 129

روش های طراحی نرم افزار Aerotran. 131

آشنایی با نرم افزار  Teams. 133

برنامه Props. 136

برنامه Qchex. 138

برنامه Ensea. 140

برنامه Metals. 142

برنامه  Primetal 144

برنامه Newcost 147

 

پیش گفتار

مبدل های حرارتی تقریباً پرکاربرترین عضو در فرآیندهای شیمیایی اند و می توان آن ها را در بیشتر واحدهای صنعتی ملاحظه کرد. آنها وسایلی هستند که امکان انتقال انرژی گرمایی  بین دو یا چند سیال در دماهای مختلف را فراهم می کنند. این عملیات می تواند بین مایع- مایع ، گاز- گاز و یا گاز- مایع انجام شود. مبدل های حرارتی به منظور خنک کردن سیال گرم و یا گرم کردن سیال با دمای پایین تر و یا هر دو مورد استفاده قرار می گیرند.

مبدل های حرارتی در محدوده وسیعی از کاربردها استفاده می شوند . این کاربردهای شامل  نیروگاه ها ، پالایشگاه ها ، صنایع پتروشیمی، صنایع ساخت و تولید ، صنایع فرآیندی ، صنایع غذایی و دارویی ، صنایع ذوب فلز ، گرمایش ، تهویه مطبوع ، سیستم های تبرید و کاربردهای فضایی میباشند. مبدل های حرارتی در دستگاه های مختلف نظیر دیگ بخار ، مولد بخار ، کندانسور، اواپراتور، تبخیر کننده ها ، برج خنک کن ، پیش گرم کن فن کویل ، خنک کن و گرم کن روغن ، رادیاتور ها ، کوره ها و ... کاربرد فراوان دارند.                  

 صنایع بسیاری در طراحی انواع مبدل های حرارتی فعالیت دارند و هم چنین ، دروس متعددی در کالج ها و دانشگاه ها با نام های گوناگون در طراحی مبدل های حرارتی ارائه     می گردد. محاسبات مربوط به مبدل ها کاری طولانی و گاهی خسته کننده است. مثلاً طراحی یک مبدل برای یک عملیات به خصوص نیاز به حدس های زیادی دارد که با استفاده از آن ها و طبق استانداردها می توان اندازه های یک مبدل مناسب را پیدا کرد. اما با استفاده از     برنامه های کامپیوتری تمام این محاسبات توسط کامپیوتر انجام میشود و طراح برای طراحی تنها باید شرایط عملیاتی و خواص سیالات حاضر در عملیات را وارد کند. نرم افزارهای  Aspen B-jac و  HTFS از این موارد هستند. این نرم افزارها شامل برنامه هایی می شوند که توانایی انجام چنین محاسباتی را دارند.

در این تحقیق ابتدا توضیحاتی در مورد مبدل های حرارتی و اصول طراحی آنها بیان گردیده و در ادامه به معرفی و آشنایی با چند نرم افزار طراحی مبدلها پرداخته شده است.

 

دسته بندی مبدل های حرارتی

مبدل های حرارتی را می توان از جنبه های مختلف دسته بندی کرد :

  • بر اساس نوع و سطح تماس سیال سرد و گرم
  • بر اساس جهت جریان سیال سرد و گرم
  • بر اساس مکانیزم انتقال حرارت بین دو سیال سرد و گرم
  • بر اساس ساختمان مکانیکی و ساختار مبدلها

 

بر اساس نوع و سطح تماس سیال سرد و گرم

1- مبدل های حرارتی نوع Recuperative

در این مبدل سیال سرد و گرم توسط یک سطح جامد ثابت از یکدیگر جدا شده اند و انتقال از طریق سطح مذکور صورت می گیرد. اکثر مبدل های موجود در صنعت از این دسته هستند.

2- مبدل های حرارتی نوع Regenerative

در این مبدل ، سطح جدا کننده سیال سرد و گرم ثابت نبوده و به طور متناوب قسمت هایی از سطح مذکور در معرض حرکت سیال سرد یا گرم قرار می گیرند. این نوع مبدل ها بیشتر در مقیاس های آزمایشگاهی و تحقیقاتی مورد استفاده قرار می گیرند.

3- مبدل های حرارتی نوع تماس مستقیم

در این نوع مبدل های حرارتی ، سیال سرد و گرم به طور مستقیم تماس حاصل نموده ( هیچ دیواره ای بین جریانهای سرد و گرم وجود ندارد ) و تبادل انرژی یا حرارت انجام می گیرد. در مبدل های تماس مستقیم ، جریانها ، دو مایع غیر قابل اختلاط و یا یک گاز و یک مایع هستند. این مبدل ها معمولا از راندمان حرارتی بالایی برخوردارند. نمونه ای از این مبدل ها ، برج های خنک کن ، کولرهای آبی و گرم کن های Open Feed Water Heater موجود در نیروگاه های بخار می باشند .

 

بر اساس جهت جریان سیال سرد و گرم

بر این اساس مبدل های حرارتی به سه دسته اصلی تقسیم می شوند :

الف- مبدل های حرارتی از نوع جریان همسو

  • مبدل های حرارتی از نوع جریان غیر همسو

ج - مبدل های حرارتی از نوع جریان عمود بر هم

 

الف-  مبدل های حرارتی از نوع جریان همسو

در این نوع مبدل ها جریان سرد و گرم موازی یکدیگر و جهت جریان سیال گرم و سرد آن ها موافق یکدیگر می باشند. یعنی دو جریان سیال ، از یک انتها به مبدل وارد می شوند و هر دو در یک جهت جریان می یابند و از انتهای دیگر خارج می شوند. نکته ای که باید به آن توجه داشت این است که دمای سیال سرد خروجی از مبدل هیچگاه به دمای سیال گرم خروجی نمی رسد. نزدیک شدن مقدار عددی دو دمای مذکور مستلزم بکارگیری سطح انتقال حرارت موثر بسیار بزرگی می باشد.

ب-  مبدل های حرارتی از نوع جریان غیر همسو

در شرایطی که جریان سیال سرد و گرم موازی یکدیگر و در خلاف جهت هم باشد مبدل را جریان غیر همسو می نامند. باید توجه داشت در این نوع مبدل ها امکان افزایش دمای سیال سرد خروجی نسبت به سیال گرم خروجی وجود دارد. این مبدلها در شرایط یکسان از سطح انتقال حرارت کمتری نسبت به مبدل های همسو برخوردار هستند.

ج- مبدل های حرارتی از نوع جریان عمود بر هم

در این نوع مبدل ها جهت جریان های سرد و گرم عمود بر هم می باشند. به عنوان متداول ترین نمونه می توان از رادیاتور اتومبیل نام برد. در آرایش جریان عمود بر هم ، بسته به طراحی ، جریان  مخلوط یا غیر مخلوط نامیده می شود. سیال داخل لوله ها چون اجازه حرکت در راستای عرضی را نخواهد داشت غیر مخلوط است. سیال بیرونی برای لوله های بی پره مخلوط است چون امکان جریان عرضی سیال و یا مخلوط شدن آن وجود دارد و برای لوله های پره دار غیر مخلوط است زیرا وجود پره ها مانع از جریان آن در جهتی عمود بر جهت اصلی جریان می شود.

 

چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود، ولی در فایل دانلودی همه چیز مرتب و کامل می‌باشد.
متن کامل با فرمت
word را که قابل ویرایش و کپی کردن می باشد، می توانید در ادامه تهیه و دانلود نمائید.


دانلود با لینک مستقیم


تحقیق بسیار کامل در مورد مبدل های حرارتی

دانلود تحقیق استانداردهای طراحی مبدل ها در کشورایران

اختصاصی از زد فایل دانلود تحقیق استانداردهای طراحی مبدل ها در کشورایران دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق استانداردهای طراحی مبدل ها در کشورایران


دانلود تحقیق استانداردهای طراحی مبدل ها در کشورایران

1 هدف و دامنه کاربرد

هدف از تدوین این استاندارد، تعیین نمادهای گرافیکی  واحدهای مبدل توان سیالی از قبیل پمپها و موتورها اختصاص یافته است (برای پمپهای مورد استفاده درانتقال سیال به استاندارد ملی ایران 9-8057 مراجعه نمایید.)

برای قوانین بنیادی ایجاد وبکارگیری نمادهای گرافیکی در دیاگرامها به استاندارد ملی ایران...[1] مراجعه نمایید.

برای مرور اطلاعات در مورد ایجاد و استفاده از تعداد نمادهای گرافیکی ثبت شده جهت شناسایی قوانین مربوط‌به ارایه‌وکاربرد این نمادهاو مثالهایی از کاربرد و استفاده آنها به استاندارد ملی ایران...[2]مراجعه کنید.

2 مراجع الزامی

مدارک الزامی زیر حاوی مقرراتی است که در متن این استاندارد به آنها ارجاع داده شده است. بدین ترتیب آن مقررات جزئی از این استاندارد محسوب می شود. در مورد مراجع دارای تاریخ چاپ و / یا تجدید نظر، اصلاحیه‌ها و تجدید نظرهای بعدی این مدارک مورد نظر نیست. معهذا بهتر است کاربران ذینفع این استاندارد،امکان کاربرد آخرین اصلاحیه‌ها و تجدید نظرهای مدارک الزامی زیر را مورد بررسی قرار دهند. در مورد مراجع بدون تاریخ چاپ و / یا تجدید نظر،آخرین چاپ و / یا تجدید نظر آن مدارک الزامی ارجاع داده شده مد نظر است.

ISO 5598:1985, Fluid power systems and components-Vocabulary

ISO 14617-1:2002, Graphical symbols for diagrams-Part 1: General information and indexes

ISO 14617-2:2002, Graphical symbols for diagrams-Part 2: Symbols having general application

ISO81714-1:1999, Design of graphical symbols for use in the technical documentation of products-Part 1: Basic rules

3 اصطلاحات و تعاریف

در این استاندارد اصطلاحات ویا/ واژه ها با تعاریف زیر بکار میروند:

3-1 پمپ جابجایی(مثبت) ((Positive) Displacement pump)

پمپی که انرژی سیال در آن در یک محفظه کاری با افزایش و کاهش حجم افزایش می‌یابد.(به استاندارد ملی ایران... رجوع شود)

3-2 پمپ نیرومحرکه دوار(Rotodynamic pump)

پمپی که انرژی سیال در آن توسط چرخش یک پروانه افزایش می‌یابد.(به استاندارد ملی ایران...1رجوع شود)

یادآوری- واژه پمپ گریزازمرکز گاهی به جای پمپ نیرومحرکه دوار بکار میرود اما این واژه به پمپ نیرومحرکه دوار با جریان مایع شعاعی اطلاق میگردد.

3-3 ظرفیت(Capacity) جابجایی (Displacement) حجم جاروب شده(Swept volume)

حجم جذب شده یا جابجا شده در هر رفت وبرگشت.( به استاندارد ملی ایران...1 رجوع شود)

3-4 پمپ مرکزگرا(Over-center pump)

پمپی که در آن مسیرجریان، بدون تغییر جهت گردش محور رانش،میتواندمعکوس گردد.

3-5 پمپ  تک جریان (Uni-flow pump)

پمپی که درآن جهت جریان مستقل از جهت گردش محور رانش میباشد.( به استاندارد ملی ایران...1 رجوع شود)

4 ابزارهایی برای تبدیل انرژی مکانیکی به انرژی سیال یا برعکس

فهرست مندرجات

 

مبدلهای توان سیالی

پیش‏گفتار1- هدف و دامنه کاربرد2- مراجع الزامی3- اصطلاحات و تعاریف

4- ابزارهایی برای تبدیل انرژی مکانیکی به انرژی سیال یا برعکس

5 ابزارهایی برای تبدیل انرژی مکانیکی یا سیالی بوسیله یک سیال واسطه

6- موتورها و سیلندرهای سیالی خطی

 

مبدل حرارتی

1-هدف و دامنه کاربرد

2- ابعاد آجرهای دیرگداز مستقیم برای مبدلهای حرارتی

 شامل 18 صفحه فایل word قابل ویرایش

 

دانلود با لینک مستقیم


دانلود تحقیق استانداردهای طراحی مبدل ها در کشورایران