زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نقش راکتورهای سلفی و بانکهای خازنی در اصلاح ضریب قدرت و افت ولتاژ شبکه

اختصاصی از زد فایل نقش راکتورهای سلفی و بانکهای خازنی در اصلاح ضریب قدرت و افت ولتاژ شبکه دانلود با لینک مستقیم و پر سرعت .

نقش راکتورهای سلفی و بانکهای خازنی در اصلاح ضریب قدرت و افت ولتاژ شبکه


نقش راکتورهای سلفی و بانکهای خازنی در اصلاح ضریب قدرت و افت ولتاژ شبکه

نقش راکتورهای سلفی و بانکهای خازنی در اصلاح ضریب قدرت و افت ولتاژ شبکه

153 صفحه در قالب word

 

 

 

 

فهرست مطالب:

بخش اول :راکتورهای سلفی

فصل اول – کلیات

1- حدود
2-اهداف
3-تعاریف
فصل دوم راکتورهای محدودکننده جریان وراکتورهای زمین کننده نوترسیستم

1-4- حدود
2-4- طراحی
5-تعاریف
6-مقادیرنامی
7-سطح عایقی
8-توانایی تحمل جریان کوتاه مدت
9-افزایش دما
10-پلاک شناسایی
11-آزمایشات راکتور
12-تلرانسها
فصل سوم-راکتورهای میراکننده

1-13-حدود
14-تعاریف
15-مقادیرنامی
16- سطح عایقی
17-افزایش دما
18-پلاک شناسایی
19-آزمایشها
فصل چهارم- راکتورهای تنظیم کننده (جهت فیلتر کردن)

1-21-حدود
22-تعاریف
23-مقادیرنامی
24-پلاک شناسایی
25-آزمایش ها
26-تلرانس
فصل پنجم – ترانسفورمر زمین کننده (متصل کننده نوترها در سیستم)

27 – مقدمه
1-28-حدود
29- تعاریف
30-مقادیر نامی
31- توانایی تحمل جریان زمین نامی
32- افزایش حرارت دما
33- سطح عایقی
34- پلاک شناسی
35- آزمایشها
36-تلرانسها
فصل ششم –راکتور های محدودکننده جریان قوس

1-37- حدود
38-تعاریف
39- مقادیر نامی
40- محدوده تنظیم
41- افزایش درجه حرارت سیم پیچ
42-سطح عایقی
43-پلاک شناسایی
44-آزمایشها
45-تلرانسها
فصل هفتم – بسته بندی ،حمل وانبار کردن
ضمیمه A :روش تعیین درجه حرارت سیم پیچ
ضمیمه B :اندازه گیری تلفات
ضمیمه c :اندازه گیری تلفات وجریان بی باری
ضمیمه D- :اندازه گیری ولتاژ اتصال کوتاه(درتپ اصلی )،امپدانس اتصال کوتاه وتلفات اتصال کوتاه
ضمیمه -  E : اندازه گیری امپدانس توالی صفردرترانسفورمر های سه فاز
ضمیمه -  F :محاسبه ی درجه حرارت  
ضمیمه – G :آزمایشهای تپ چنجرقابل قطع درزیر بار
بخش دوم : خازن ها

مقدمه
فصل اول – کلیات

1- حدود
2- اهداف
3- تعاریف
4- طراحی و ساخت
فصل دوم - مشخصات خازن

5- توان واحد خازنی
6- اضافه بار قابل قبول
7- پلاک شناسائی خازن
8- مشخصات کلی خازن
فصل سوم -  آزمایشات خازن

9- کلیات آزمایش
10- جزئیات آزمایشات
11- سطوح عایقی و ولتاژهای تست بین ترمینال خازن و زمین
فصل چهارم - راهنمای نصب و بهره برداری خازن

12- کلیات
13- نحوه انتخاب خازن برای نصب در شبکه
14- نحوه انتخاب خازنها توسط مشترکین
15- نصب خازنهای فشا ضعیف
16- نصب خازنهای فشار قوی
17- دمای کارخازن
18- شرایط ویژه
19- اضافه ولتاژها
20- جریانهای بار
21- انتخاب سطح عایقی
22- ابزارهای کلید زنی و حفاظتی و کنترلی و نحوه اتصال آنها
23- تعمیر و نگهداری خازنهای فشار قوی
فصل پنجم - بسته بندی ، حمل و انبار کردن
فصل ششم – مشخصات خازن و تجهیزات متعلقه
نتیجه گیری
ضمیمه A : اطلاعات مربوط به اندازه گیری یونیزاسیون خازن
ضمیمه B: محاسبه توان یک خازن سه فاز با استفاده از کاپاسیتانس اندازه گیری شده سه خازن تکفاز
ضمیمه C :جدول انتخاب ظرفیت بانکهای خازنی
مراجع



مقدمه :
جبران سازی توان راکتیو یکی از ابزار بهینه سازی هزینه انرژی و برگشت سریع سـرمایه است. در طول چند سال گذشته با بهره گیری از مواد جدید و روشهای تولید پیشرفته، خازنهایی با تلفات بسیار اندک در حجم های کوچک ساخته شده است. با توسـعه وتولیـد کنتاکتـورهای خـازنی و رگـولاتورهای میکـروپرسسوری بسیار پیشـرفته که تضمین کننده رفتار مناسب وبهینه بانک خازنی به تغییرات بار است، بانکهای خازنی کاملا قابل اعتماد گردیده‌اند. با این وجود دلایل بسیاری بر لزوم آشنایی مشاوران و مصرف کنندگان باجنبه های پیچیده این موضوع وجود دارد.
بدلیل افزایش اعوجاجهای هارمونیکی درشبکه های فشار ضعیف و متوسط ، طراحی بانکهای خازنی بسیار مشـکل و پیچیده شده اند. یکسو سازها، کنترلرهای الکترونیکی موتورها، مبـدلهای فرکـانس و دیگر بارهای الکتـرونیکی برای جبـران توان راکتیو مصرفی، نیاز به خازن دارند و در عین حال این مصرف کنندگان مولد هارمونیک هستند. در صورت نزدیک بودن فرکانس رزونانس مجموعه ترانس و خازن به فرکانس هارمونیکها، امکان وقوع خطر بسیار محتمل است. بنابراین به منظور اجتناب از مسایل و هزینه های بعدی قویا پیشنهاد میگردد تا افراد با تجربه برای دستیابی به طرحی مناسب مورد مشاوره قرارگیرند.
اغلب دستگاهها و مصرف کنندگان الکتریکی برای انجام کار مفید نیازمند مقداری توان راکتیو برای مهیا کردن شرایط لازم برای انجام کار می باشند. بعنوان مثال " موتورهای الکتریکی "A.C برای تبدیل انرژی الکتریکی به انرژی مکانیکی، نیازمند تولید شار مغناطیسی در فاصله هوایی موتور هستند. ایجاد شار تنها توسط تـوان راکتیـو امکان پذیر و با افزایش بار مکانیکی موتور مقدار توان راکتیو بیشتری مصرف می گردد.


عمده مصرف کنندگان انرژی راکتیو عبارتند از:
1-  سیستم های الکترونیک قدرت
الف)- مبدل های AC/DC  (Rectefiers)   
ب)- مبدل های      DC/AC   (Inverters)
ج)- مبدل های     AC/AC   (Converters)   
د)- چاپرها         (Choppers)
2- مصرف کنندگان یا تجهیزاتی که دارای مشخصه غیر خطی هستند.
3 - مصرف کنندگانی که در شکل موج ولتاژ محل تغذیه خود اعوجاج (هارمونیک) ایجاد می‌نمایند .
4 - متعادل ساز های بار های نا متعادل
5 - تثبیت کنندههای ولتاژ
6- کورههای القایی
7- کورههای قوس الکتریکی
8- سیستم های جوشکاری  AC , DC
همانگونه که ذکر شد مصرف انرژی راکتیو اجتناب ناپذیر است.
انتقال انرژی راکتیو، انتقال جریان الکتریکی است و انتقالش نیازمند به کابل با سطح مقطع بزرگتر، دکل های فشار قوی مقاومتر و در نتیجه هزینه های مازاد است. همچنین افزایش تلفات الکتریکی و کاهش راندمان شبکه را نیز به همراه دارد. در مواردی مانند کاربردهای الکترونیک قدرت و متعادل سازی بارهای نامتعادل حتی انتقال انرژی راکتیو هم کار ساز نبوده و باید انرژی در محل تولید گردد.
خازن اصطلاحا تولید کننده انرژی راکتیو است، اما خازن توان راکتیو تولید نکرده بلکه مصرف کننده آن نیز میباشد. فقط در زمانی که سلف انرژی راکتیو در خود ذخیره می نماید (ازشبکه می کشد) خازن، انرژی ذخیره شده خود را به شبکه تحویل می دهد و در زمانی که سلف انرژی ذخیره شده اش را به شبکه پس می دهد خازن از شبکه انرژی می کشد. حال اگر سلف و خازن در کنار هم قرار گیرند، هنگامیکه خازن انرژی می دهد سلف آن انرژی را می گیرد و زمانی که خازن انرژی می گیرد سلف انرژی می دهد که موجب تعادل انرژی بین سلف و خازن گشته و دیگر تبادل انرژی بین مصرف کننده و شبکه صورت نمی گیرد.

 

 

ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است

متن کامل را می توانید در ادامه دانلود نمائید

چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است

 


دانلود با لینک مستقیم


نقش راکتورهای سلفی و بانکهای خازنی در اصلاح ضریب قدرت و افت ولتاژ شبکه

تحقیق و بررسی در مورد اینورترهای قدرت بالا برای منابع ولتاژ در کاربردهای صنعتی

اختصاصی از زد فایل تحقیق و بررسی در مورد اینورترهای قدرت بالا برای منابع ولتاژ در کاربردهای صنعتی دانلود با لینک مستقیم و پر سرعت .

تحقیق و بررسی در مورد اینورترهای قدرت بالا برای منابع ولتاژ در کاربردهای صنعتی


تحقیق و بررسی در مورد اینورترهای قدرت بالا برای منابع ولتاژ در کاربردهای صنعتی

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه

4

برخی از فهرست مطالب

 

اینورترهای قدرت بالا برای منابع ولتاژ در کاربردهای صنعتی (با IGBT)

VSI قدرت بالا به عنوان درایو موتورهای القائی که از سیستم کنترل سرعت تنظیم شوند ASC[1][1] استفاده می­کنند به وفور در صنعت استفاده می­شوند. کاربردهای دیگری از این اینورترها به عنوان راه انداز فن­ها و پمپ­های صنعتی می­باشد. یا برای کاربردهای ذخیره کننده انرژی و نیز در کاربردهای صنایع فلزی ورقه­سازی مفتول سازی و ... استفاده می­شوند

 

قبلاً از سیستم­های بر مبنای GTO استفاده می­شده ولی اینک از سیستمهای IGBT به عنوان جایگزین استفاده می­گردد که دارای محاسن زیر می­باشند :

- مصرف توان کمتر

- کموتاسیون سرعت بالا و تلفات سوئیچینگ پائین

- توانائی حفاظت اتصال کوتاه بالا

- راحتی در استفاده بصورت موازی


 


دانلود با لینک مستقیم


تحقیق و بررسی در مورد اینورترهای قدرت بالا برای منابع ولتاژ در کاربردهای صنعتی

دانلود تحقیق کامل درمورد تست های ترانس ولتاژ

اختصاصی از زد فایل دانلود تحقیق کامل درمورد تست های ترانس ولتاژ دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد تست های ترانس ولتاژ


دانلود تحقیق کامل درمورد تست های ترانس ولتاژ

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 24

 

تست های ترانس ولتاژ

تست های ترانس ولتاژ بسیار متنوع است اما در محل پست و بعد از نصب ترانس ، تستهایی که بروی آن برای بررسی صحت کار آن انجام میشود به قرار زیر است:

 

1 تست مقاومت عایقی ترانس ولتاژ :

تست عایقی را با دستگاه میگر انجام می دهیم ، در این تست مقاومت عایقی بین قسمتهای مختلف ترانس را بررسی نموده و نتایج را ثبت می کنیم . اولین تست عایقی ، برسی میزان مقاومت بین اولیه ترانس با زمین است . در ترانسهای ولتاژ خازنی احتیاجی به باز نمودن سر زمین شده در انتهای سیم پیچ اولیه نیست ، اما در ترانسهای ولتاژ اندوکتیو حتماً باید سر زمین شده در انتهای سیم پیچ اولیه را باز نمود و تست را انجام داد . در این تست ، پراب مثبت را به اولیه سیم پیچ زده و پراب منفی دستگاه میگر را با زمین وصل میکنیم و با اعمال ولتاژ 5 کیلو ولت ، نتیجه را بررسی میکنیم . در این تست هم همانند تستهای میگر قبلی باید برای هر کیلو ولت مقاومتی برابر یک مگا اهم داشته باشیم .در ترانسهای اندوکتیو پراب مثبت دستگاه میگر را میتوان به ابتدا و یا انتهای سیم پیچ اولیه متصل نمود و تست را انجام داد .

بعد از تست اولیه ، با انتخاب رنج یک کیلو ولت دستگاه میگر ، ثانویه ترانس را تست می کنیم . در این مرحله هم نباید سری از سیم پیچ ثانویه در ( در همه کور ها ) زمین باشد . در تست میگر احتیاجی به زماندار بودن مده=ت تست نیست و با ساکن شدن تقریبی میزان عایقی نشان داده شده توسط دستگاه ، میتوان نتایج را ثبت نمود .مرحله سوم تست میگر ، بررسی عایقی بین اولیه و ثانویه ترانس ولتاژ است که نسبت عایقی بین این دو سیم پیچ را با اعمال ولتاژ 5/2 کیلو ولت ، انجام میدهیم . این تست در دستور کار نبوده و تنها برای اطمینان بیشتر انجام میشود .

 

2 تست نسبت تبدیل ترانس ولتاژ :

در این تست به بررسی نسبت  ولتاژ اعمالی به اولیه و ولتاژ قرائت شده در ثانویه می پردازیم . بدین منظور منبع ولتاژ متناوب را به اولیه ترانس ولتاژ متصل کرده ( در این حالت باید انتهای سیم پیچ اولیه زمین باشد ) و با اعمال ولتاژ، ولتاژ القا شده در ثانویه را با ولت متر دیجیتال دقیق اندازه گیری کنیم .

بسته به نوع و توان منبع ولتاژ هر چه بتوان ولتاژ را بطور خطی بالا ببریم و اندازه گیری را در ولتاژ ها مختلف بسنجیم ، بهتر میتوان به صحت عملکرد ترانس پی برد . اندازه گیری ولتاژ ثانویه را همزمان برای تمامی کورها انجام می دهیم .

 

3 تست پلاریته ترانس :

در این تست به بررسی پلاریته ترانس می پردازیم و با اعمال ولتاژ به اولیه ترانس ، با دقت در اتصال پلاریته منبع ولتاژ مستقیم ( یعنی سر مثبت منبع به ابتدای سر اولیه ) ولتاژی در حدود 12-6 ولت را به ترانس تزریق کرده و با یک ولت متر آنالوگ ( یا گالوانومتر ) در ثانویه به بررسی پلاریته می پردازیم. بدین منظور سر مثبت ولت متر ( پراب قرمز ) را به ترمینالهای 1a  یا 2a وصل کرده و سر دیگر ( پراب مشکی )ولت متر را به انتهای سیم پیچ ثانویه وصل میکنیم و حرکت عقربه را بررسی میکنیم . در لحظه وصل مدار به اولیه باید ولتمتر آنالوگ به مدار ثانویه وصل شده باشد و در حالت درست پلاریته ، عقربه ولت متر حرکتی به سمت جلو خواهد داشت .

 

4 تست قدرت ترانس ( Burden ) :

در این تست به بررسی میزان قدرت ترانس می پردازیم تا میزان توان ترانس را در حالتی که تجهیزات حفاظتی و اندازه گیری به آن وصل شده اند را اندازه گیری کنیم .

میزان توان یک ترانس را بر حسب ولت آمپر بروی پلاک ترانس درج می کنند .در این تست با اعمال ولتاژ ( بطور مثال 220 ولت برای ترانسهای ولتاژ تک فاز ) به اولیه و سنجش مقدار جریان و ولتاژ در ثانویه به بررسی ترانس می پردازیم . مقدار ولتاژ و جریان در ثانویه را در زمانی که کلیه فیوزها ومدارات بسته شده اند و شرایط آماده به کار ترانس مهیاست را در هم ضرب کرده و با مقایسه با توان نامی ترانس ، میزان قدرت ترانس را می سنجیم.

 

5 تست مقاومت سیم پیچ :

از نام این تست دقیقاً مشخص است به چه منظور انجام میشود . مدارات این تست هم دقیقاً مانند اندازه گیری مقاومت سیم پیچ در ترانس جریان است و به روشهای مختلف قابل اندازه گیری است و نکته مهم در این تست دمای محیط است که باید ثبت شود و پس از لحاظ  قرار دادن ضرایب تصحیح مقدار مقاومت سیم پیچ محاسبه شود .

 

تست ترانس جریان

مطالب بصورت ایمیج هستند .قبلاْ از دوستان عذر خواهی میکنم.جهت تهیه نسخه اصلی تماس بگیرید.

 

ترانس جریان :

 

ترانس جریان برای اندازه گیری مقدار جریان و همچنین فرستادن نمونه جریان برای رله ها استفاده میشود . در ثانویه این نوع ترانس ها ممکن است تا سه کور (  core  ) برای اندازه گیری ، حفاظت و برای رله دیفرانسیل موجود باشد . ( البته تنها برای فیدر های ورودی رله دیفرانسیل تعبیه می شود ) . این ترانسها همانند آمپر مترها بصورت سری در مدار قرار می گیرند . در انواع قدیم این ترانسها که با دو نسبت عرضه می شده با تغییر نسبت اتصال در اولیه  نسبت تبدیل ترانس را میتوانستیم عوض کنیم ، اما اغلب ترانسهای جدید این کار را در ثانویه تعبیه می کنند ، یعنی با تغییر در ثانویه به نسبت دلخواه خواهیم رسید .

تست هایی که می توان بروی این ترانس انجام داد از قرار زیر است :

1 – تست نسبت تبدیل : این تست جهت بررسی صحت نسبت تبدیل جریان ورودی به جریان خروجی است . در این تست با دستگاه تزریق جریان ، جریان مشخصی را به اولیه اعمال می کنیم و جریان القا شده در ثانویه را بطور دقیق اندازه گیری می کنیم .لازم به تذکر است که در هنگام انجام این تست حتما باید سر های ثانویه در تمام کور ها اتصال کوتاه شده باشند . این کار را برای تمام کور ها باید انجام داد .

2 – تست منحنی اشباع : می دانیم که هر سیم پیچی تا حدی میتواند میدانهای مغناطیسی را در خود القا کند و بیشتر از آن ممکن است که به سیم پیچ آسیب برساند . وقتی جریان در سیم پیچ های ترانس زیاد میشود، متناسب با آن شار عبوری از ماده مغناطیسی هم زیاد میشود. ولی وقتی به نقطه زانویی رسیدیم این تناسب به هم می خورد

یعنی با افزایش جریان، دیگر شار ثابت مانده و در این حالت میگویند که  ترانس به حالت اشباع رفته است .

ترانس در حالت اشباع به دلیل تلفات هیسترزیس بسیار گرم میشود و خطر انفجار هم حتی به وجود می آید.

در ضمن شکل موج ورودی و خروجی هم یکسان نیستند. یعنی اگر به اولیه ترانس یک جریان سینوسی تزریق شود در ثانویه موج سینوسی  نخواهیم داشت . بلکه یک شکل معوج (کج و کوله) خواهیم دید.

در این تست به سمت ثانویه ترانس بوسیله دستگاه واریاک ، که به  ولتاژ 220 ولت متناوب وصل است ، ولتاژ را از صفر ولت تزریق می کنیم و با ولت متر و آمپر متر، جریان و ولتاژ را بررسی می کنیم و تا زمانیکه با افزایش %10 ولتاژ ، مقدار جریان %50 اضافه گردید ، آن نقطه را بعنوان نقطه زانویی در نمودار منحنی شار – جریان می شناسیم.

3- تست مقاومت اهمی سیم پیچ : در این تست از همان روشی که در تست ترانس استفاده کرده ایم ، استفاده میشود.

4 – تست پلاریته : در این تست می خواهیم ببینیم که جهت القا جریان در ثانویه به نسبت ورودی و خروجی جریان در اولیه صحیح است یا نه . بدین منظور ولتاژ مستقیمی را با پلاریته صحیح به طرف اولیه وصل کرده و با آمپر متر آنالوگ و با توجه به جهت پراب های دستگاه جریان را می خوانیم و جهت حرکت عقربه را چک می کنیم.

5 – تست بردن : تست بردن یا تست قدرت ترانس ، بدین صورت است که می خواهیم توان ترانس را چک نمائیم و ببینیم که با توجه به مسیر و اندازه کابلها و دستگاههای اندازه گیری در مسیر ترانس، آیا قدرت لازمه را ترانس جریان دارد و یا نه . جهت این تست جریان نامی ترانس را در مسیر به اصطلاح بار در ثانویه ترانس تزریق کرده و ولتاژ را اندازه گیری کرده و توان آنرا حساب کرده و با توان ترانس جریان مقایسه می کنیم .

6- تست مقاومت عایقی : این تست را در تمام تجهیزات فشار قوی انجام میدهیم ، از جمله ترانسهای جریان . در این تست اولیه ترانس را با 5 کیلو ولت نسبت به زمین چک می کنیم و ثانویه آنرا با 500 ولت ، نسبت به زمین . همچنین بین اولیه و ثانویه را هم می توان چک نمود تا هیچ گونه خطایی در  این ترانسها وجود نداشته باشد .

 

ترانس ولتـــاژ :

 

ترانس ولتاژ جهت اندازه گیری ولتاژ و فرستادن نمونه ولتاژ به سوی رله ها بکار میرود .این دستگاه همانند ولت مترها بصورت موازی در مدار قرار می گیرند ، یعنی یک سر اولیه به ولتاژ فشار قوی و سر دیگر آن به زمین وصل میشود . در ثانویه هم به همین قرار است یعنی یک سر آن به زمین است . ترانس ولتاژ هم ممکن است دارای چند کور باشد ( بسته به نیاز و تجهیزات پست ). در فیدر های 20 کیلو ولت قبل از این ترانسها فیوز نصب میشود . باز بودن سر های این ترانس در ثانویه بر خلاف ترانس های جریان مشکلی پدید نمی آورد ( با باز بودن سر ثانویه در ترانس جریان ، ترانس متلاشی خواهد شد ) .

 

تست های این ترانس :

1 – تست مقاومت عایقی : همانند ترانس جریان است .

2 – تست نسبت – تبدیل : در این تست با تزریق ولتاژی مشخص به طرف اولیه ( با دستگاه تزریق ولتاژ ) ولتاژ القا شده در ثانویه را اندازه گیری می کنیم .

3 – تست پلاریته : این تست هم همانند تست انجام شده در ترانس جریان خواهد بود .

4 – تست بردن : در این تست هم پی به توان خروجی در ترانس خواهیم برد با این تفاوت نسبت به ترانس جریان که ولتاژ را تزریق و جریان را اندازه گیری می کنیم . اگر ولتاژ را برای یک فاز تزریق می کنیم باید نسبت را دقیقا رعایت کرده باشیم ( نسبت فاز به زمین ) .

 

تست های مربوط به فیدر 20 کیلو ولت :

 

تست هایی که می توان بروی بریکر های 20 کیلو ولت انجام داد :

تایم تست : در این تست زمان قطع و وصل بریکر را بررسی می کنیم ، یعنی زمانیکه به بوبین های قطع و وصل فرمان صادر میشود تا آن عمل انجام و به نتیجه برسد . این زمان برای قطع بسیار مهم است و در حد میلی ثانیه باید باشد و هر چه سریعتر باشد بهتر است .این تست را دستگاه" تایم تست" انجام می دهد .

یکی از تست های مهم در تایم تست زمان اندازه گیری در حالت o-c-o  است یعنی وقتی که بریکر وصل است و فرمان قطع صادر میشود و بعد از آن رگلوزر فرمان وصل را میدهد اما به خاطر باقی بودن عیب در مسیر مجدداً فرمان قطع صادر میشود .

تست کنتاکت رزیستانس : در این تست مقاومت بین کنتاکت های بریکر را در حالت وصل بریکر بررسی می کنیم ، در این تست مقاومت های اندازه گیری شده باید در حد میکرو اهم و بسیار پائین باشد .این تست را بوسیله دستگاه "میکرو اهم متر" انجام میدهیم .

تست فشار گاز و نشتی گاز : این تست را توسط مانومتر مخصوص انجام می دهند و فشار گاز داخل سیلندر را اندازه گیری می کنند . دستگاه نشت یاب هم احتمال نشت گاز را در اطراف سیلندر بررسی می کند .

ترانس ولتاژ

 

ترانس ولتاژ ( Voltage transformer ) ، یک ترانس کاهنده است برای رسیدن به ولتاژ متناظر در اولیه این ترانس .  ولتاژ ثانویه در این ترانسها متناسب و هم فاز با ولتاژ اولیه است . این تراسها بصورت موازی بین ولتاژ اولیه و زمین قرار می گیرد ( در انواع تک فاز ) .

این ترانس هم دارای انواع مختلف و اندازه ها ، قدرت متفاوت و ساختمانهای متفاوت است . ترانسهای ولتاژ در انواع تک فاز ، دو فاز و چند فاز نیز ساخته میشوند . این ترانسها در ولتاژ های بالا برای صرفه جویی درهزینه ها و کمتر شدن حجم ساختمانی خود از خازنهایی سود می برد که در داخل خود ترانس تعبیه شده است و به ترانسهای ولتاژ خازنی معروف است .

علاوه بر اندازه گیری ولتاژ فشار قوی و نمونه برداری ولتاژ برای رله های حفاظتی از ترانس های ولتاژ در پستها برای ارتباطات PLC نیز استفاده میشود که در بعضی موارد وسایل ارتباطی ( لاین تراپ ) بروی خود این ترانسها نصب میشود که در ادامه به آن میپردازیم .

 

انواع ترانس ولتاژ :

v     ترانس ولتاژ اندوکتیو ( VT  یا PT )

v     ترانس ولتاژ خازنی  ( Capacitive Voltage Transformer )

 

- ترانس ولتاژ اندوکتیو :

 

ترانسهای ولتاژ ، شامل دو سیم پیچ هستند که بسته به نوع ترانس و ترانس مورد درخواست در ثانویه میتواند تعداد بیشتری سیم پیچ ( کور ) وجود داشته باشد . در درون این ترانسها هم روغن روان قرار دارد و باعث خنک شدن ترانس میشود .در اولیه ، این ترانس به ولتاژ نامی پست متصل میشود و تنها شامل یک ترمینال است ( البته در انواعی از آن ترمینالهای اولیه ورود و خروج هم وجود دارد ) . قدرت خروجی ترانس ولتاژ برابر با مجموع قدرت کورهای ثانویه است . قدرتی که بروی پلاک ترانس درج میشود ، قدرتی است که ترانس بطور دائم در مدار میتواند بدهد .ترانس ولتاژ طرح شده برای فرکانس 50 هرتز میتواند در فرکانس 60 هرتز هم بدون افت قدرت نامی بکارش ادامه دهد.

 

ترانسفور ماتور فشار قوی خشک  

در ژوئیه 1999، شرکت ABB، یک ترانسفور ماتور فشار قوی خشک به نام “Dryformer “ ساخته است که نیازی به روغن جهت خنک شدن بار به عنوان دی الکتریک ندارد.در این ترانسفورماتور به جای استفاده از هادیهای مسی با عایق کاغذی از کابل پلیمری خشک با هادی سیلندری استفاده می شود.تکنولوژی کابل استفاده شده در این ترانسفورماتور قبلاً در ساخت یک ژنراترو فشار قوی به نام "Power Former" در شرکتABB به کار گرفته شده است. نخستین نمونه از این ترانسفورماتور اکنون در نیروگاه هیدروالکترولیک “Lotte fors” واقع در مرکز سوئد نصب شده که انتظار می رود به دلیل نیاز روزافزون صنعت به ترانسفورماتور هایی که از ایمنی بیشتری برخوردار باشند و با محیط زیست نیز سازگاری بیشتری داشته باشند، با استقبال فراوانی روبرو گردد.

ایده ساخت ترانسفورماتور فاقد روغن در اواسط دهه 90 مطرح شد. بررسی، طراحی و ساخت این ترانسفورماتور از بهار سال 1996 در شرکت ABB شروع شد. ABB در این پروژه از همکاری چند شرکت خدماتی برق از جمله Birka Kraft و Stora Enso نیز بر خوردار بوده است.

تکنولوژی ساخت ترانسفورماتور فشار قوی فاقد روغن در طول عمر یکصد ساله ترانسفورماتورها، یک انقلاب محسوب می شود. ایده استفاده از کابل با عایق پلیمر پلی اتیلن (XLPE) به جای هادیهای مسی دارای عایق کاغذی از ذهن یک محقق ABB در سوئد به نام پرفسور “Mats lijon” تراوش کرده است.

تکنولوژی استفاده از کابل به جای هادیهای مسی دارای عایق کاغذی، نخستین بار در سال 1998 در یک ژنراتور فشار قوی به نام “ Power Former” ساخت ABB به کار گرفته شد. در این ژنراتور بر خلاف سابق که از هادیهای شمشی  مستطیلی  در سیم پیچی استاتور استفاده می شد، از هادیهای گرد استفاده شده است. همانطور که از معادلات ماکسول استنباط می شود، هادیهای سیلندری ، توزیع میدان الکتریکی متقارنی دارند. بر این اساس ژنراتوری می توان ساخت که برق را با سطح ولتاژ شبکه تولید کند بطوریکه نیاز به ترانسفورماتور افزاینده نباشد. در نتیجه این کار، تلفات الکتریکی به میزان 30 در صد کاهش می یابد.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد تست های ترانس ولتاژ

پروژه حفاظت خطوط در مقابل اضافه ولتاژ

اختصاصی از زد فایل پروژه حفاظت خطوط در مقابل اضافه ولتاژ دانلود با لینک مستقیم و پر سرعت .

پروژه حفاظت خطوط در مقابل اضافه ولتاژ


پروژه حفاظت خطوط در مقابل اضافه ولتاژ

فایل : PDF-Word

تعداد صفحه : 42

اصولآ هر تغییر ناگهانی در شرایط کار و یا  آرایش سیستم یک پدیده ی گذرا نامیده میشود . با توجه به این مطلب اضافه ولتاژها پدیده های گذرایی هستند که روی ولتاژ نامی سیستم قدرت قرار گرفته و باعث ایجاد نویز و پارازیت ، تخریب تجهیزات و ایجاد وقفه و قطعی در سرویس دهی سیستم قدرت شده و در نتیجه باعث کاهش قابلیت اطمینان و کیفیت توان می شود.

این اضافه ولتاژ گذرا به صورت موج اضافه ولتاژ در شبکه ظاهر گشته با سرعتی نزدیک سرعت نور در طول هادی ها منتشر می گردند. اضافه ولتاژ ناشی از صاعقه یا کلیدزنی ممکن است باعث ایجاد اتصالی بین فاز با فاز یا  فاز با زمین گردد.

فهرست مطالب

مقدمه

معرفی انواع اضافه ولتاژ ها

اضافه های ولتاژ های پایدار

اضافه ولتاژموقت

پدیده فرانتی

اضافه ولتاژ های گذرا

اضافه ولتاژهای صاعقه

انواع برخورد صاعقه

برخورد صاعقه به سر دکل

برخورد صاعقه به سیم گارد

برخورد صاعقه به نزدیکی هادی

عوامل ایجاد اضافه ولتاژ براثر برخورد غیرمستقیم صاعقه

اضافه ولتاژهای کلید زنی

عوامل موثر بر میزان اضافه ولتاژهای کلیدزنی

تئوری امواج سیار و بازتابش

راههای حفاظت در برابر اضافه ولتاژ

منابع

 


دانلود با لینک مستقیم


پروژه حفاظت خطوط در مقابل اضافه ولتاژ

دانلود مقاله اصول رگولاتورهای خطی ولتاژ

اختصاصی از زد فایل دانلود مقاله اصول رگولاتورهای خطی ولتاژ دانلود با لینک مستقیم و پر سرعت .

 

تعداد صفحات : 56 صفحه        -      

قالب بندی :  word        

 

 

 

چکیده

 

این مقاله درباره عملکرد رگولاتورهای خطی ولتاژ می‌باشد. متداول‌ترین روش‌های رگولاسیون مطرح خواهند شد. در قسمت رگولاتورهای خطی، انواع استاندارد، LDO  و نیمه LDO به همراه مثالهای مداری ، تشریح خواهند شد. البته رگولاتورهای سویچینگ دارای انواع کاهشی، کاهشی – افزایشی ، افزایشی و بازگشتی نیز وجود دارند. همچنین مثالهایی از کاربردهای عملی با استفاده از این رگولاتورها ارائه می‌شود.


مقدمه

 

رگولاتور خطی بلوک ساختاری اساسی تقریبا هر منبع تغذیه الکترونیکی می‌باشد. استفاده از IC  رگولاتور خطی آسان است و بطور کامل حفاظت شده (fool proof)  می‌باشد و آنقدر ارزان است که معمولا یکی از ارزان‌ترین اجزای یک سیستم الکترونیکی می‌باشد. این مقاله اطلاعاتی برای درک عمیق‌تر عملکرد رگولاتور خطی ارائه می‌دهد و کمک می‌کند تا کاربردها و مشخصه‌های رگولاتور به خوبی معلوم گردد. تعدادی مدار واقعی از رگولاتورهای تجاری که در حال حاضر موجودند، ارائه می‌شود.

 

محصولات جدید در حوزه تنظیم کننده‌های LDO واقع شده اند که در بسیاری از کاربردها، مزایای بیشتری نسبت به رگولاتورهای استاندارد ارائه می‌دهند.

 

عملکرد رگولاتورهای خطی ولتاژ

مقدمه

هر مدار الکترونیکی نیاز به ولتاژ تغذیه‌ای دارد که معمولا ثابت فرض می‌شود.  یک رگولاتور ولتاژ، این ولتاژ خروجی dc ثابت را فراهم می‌کند و شامل مجموعه‌ مداراتی است که بطور مداوم ولتاژ خروجی را بدون توجه به تغییرات جریان بار یا ولتاژ ورودی، در مقدار طراحی، ثابت نگه می‌دارد(فرض بر این است که جریان بار و ولتاژ ورودی در محدوده عملکرد تعیین شده برای قطعه می‌باشند).

رگولاتور ولتاژ خطی پایه

یک رگولاتور خطی به کمک یک منبع جریان کنترل شده با ولتاژ، ولتاژ معین و ثابتی را در پایانه خروجی‌اش ایجاد می‌کند.

 

 

 

مجموعه مدارات کنترلی باید ولتاژ خروجی را حس کند و منبع جریان را( به میزانی که مورد نیاز بار است) برای نگه داشتن ولتاژ خروجی در میزان مطلوب تنظیم نماید. محدودیت طراحی منبع جریان، حداکثر جریان باری را که رگولاتور می‌دهد، در حالی که همچنان به صورت رگوله باشد، معین می‌کند. ولتاژ خروجی با یک حلقه فیدبک که به نوعی جبران سازی برای حصول اطمینان از پایداری حلقه نیاز دارد، کنترل می‌شود. بیشتر رگولاتورهای خطی دارای جبران سازی داخلی هستند و بدون نیاز به به اجزای خارجی، کاملا پایدار می‌باشند. برخی رگولاتورها( مانند انواع LDO ) ، به مقداری ظرفیت خازنی خارجی که از خروجی به زمین وصل شده است، برای حصول اطمینان از پایداری تنظیم کننده احتیاج دارند. مشخصه دیگر هر رگولاتور خطی این است که برای اصلاح ولتاژ خروجی بعد از تغییر در جریان بار، به مقدار محدودی زمان نیاز دارد. این تاخیر زمانی بیانگر مشخصه پاسخ زودگذر است که نشان می‌دهد یک رگولاتور بعد از تغییر بار با چه سرعتی می تواند به شریط حالت پایدار بازگردد.

عملکرد حلقه کنترلی

عملکرد حلقه کنترلی در یک رگولاتور خطی واقعی با استفاده از دیاگرام مختصر شده شکل 2 توضیح داده خواهد شد. (وظیفه حلقه کنترلی در همه انواع رگولاتورهای خطی ، یکسان است).

 

 

 

قطعه عبوری Q1 در این رگولاتور از یک زوج دارلینگتون NPN که بوسیله یک ترانزیستور PNP راه‌اندازی می‌شود، تشکیل شده است (این topology یک رگولاتور استاندارد است) .جریان خارج شده از امیتر ترانزیستور عبوری (که همان جریان بار IL می‌باشد) بوسیله QQ2  و تقویت کننده خطای ولتاژ کنترل می‌شود. جریان عبوری از مقسم مقاومتی R2,R1 در مقایسه با جریان بار، ناچیز است. حلقه فیدبکی که ولتاژ خروجی را کنترل می‌کند با استفاده از R2,R1 برای حس کردن ولتاژ خروجی و اعمال این ولتاژ به ورودی معکوس کننده تقویت کننده خطای ولتاژ، ایجاد می‌گردد. ورودی غیر معکوس کننده به ولتاژ مرجع وصل است که به این معنی است که تقویت کننده خطا بطور دائم ولتاژ خروجی‌اش را (و همچنین جریان را از طریقQ1) طوری تنظیم  می‌کند که ولتاژهای دو سر ورودی‌اش ، برابر گردد. عملکرد حلقه فیدبک بطور مداوم خروجی را در یک مقدار معین که ضریبی از ولتاژ مرجع است (که بوسیله R2,R1  تنظیم می‌شود)، بدون توجه به تغییرات جریان بار، ثابت نگه می‌دارد. باید توجه داشت که یک افزایش یا کاهش ناگهانی در جریان بار (یا یک تغییر پله‌ای در مقاومت بار) باعث می‌شود ولتاژ خروجی آنقدر تغییر کند تا حلقه بتواند آنرا تصیح کند و در یک سطح جدید تثبیت گردد(که به این، پاسخ زودگذر گفته می‌شود). تغییر ولتاژ خروجی بوسیله R2,R1 حس می‌شود و به صورت یک سیگنال خطا در ورودی تقویت کننده خطا ظاهر می‌گردد و باعث می‌شود تا جریان از طریق Q1 تصحیح گردد.

 

انواع رگولاتورهای خطی (LDO ، استاندارد و نیمه LDO)

 

سه نوع اساسی از رگولاتورهای خطی شرح داده می‌شود : رگولاتور استاندارد (شامل دارلینگتونNPN ) ، Low-Dropout یا رگولاتور LDO  و رگولاتور نیمه LDO .

 

مهمترین تفاوت این سه نوع رگولاتور ، ولتاژ dropout می‌باشد که کمترین افت ولتاژی است که برای حفظ رگولاسیون ولتاژ خروجی مورد نیاز است. نکته مهمی که باید در نظر گرفت این است که رگولاتور خطی با کوچکترین ولتاژی کار کند که کمترین تلفات توان داخلی وبیشترین راندمان را داشته باشد. رگولاتور LDO به کمترین مقدار ولتاژ نیاز دارد، در حالی که رگولاتور استاندارد به بیشترین مقدار ولتاژ احتیاج دارد. تفاوت مهم دیگر رگولاتورها ، جریان پایه زمین است که رگولاتور در زمان تحریک یا به راه اندختن جریان بار مشخص شده‌اش به آن نیاز دارد. رگولاتور استاندارد کمترین جریان پایه زمین را دارد ، در حالی که نوع LDO به طور کلی بالاترین جریان را دارد (این تفاوتها در بخش‌های بعدی شرح داده خواهد شد). جریان افزایش‌یافته پایه زمین ، نامطلوب است زیرا یک جریان هدر رفته می‌باشد. به این دلیل که باید منبع آنرا تامین کند ولی به بار داده نمی‌شود.

 


دانلود با لینک مستقیم


دانلود مقاله اصول رگولاتورهای خطی ولتاژ