زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پایان نامه کارشناسی ارشد عمرانتحلیل پایداری لرزهای سدهای وزنی بتنی ترک خورده

اختصاصی از زد فایل پایان نامه کارشناسی ارشد عمرانتحلیل پایداری لرزهای سدهای وزنی بتنی ترک خورده دانلود با لینک مستقیم و پر سرعت .

پایان نامه کارشناسی ارشد عمرانتحلیل پایداری لرزهای سدهای وزنی بتنی ترک خورده


پایان نامه کارشناسی ارشد عمران تحلیل پایداری لرزهای سدهای وزنی بتنی ترک خورده

این فایل در قالب  پی دی اف و 120 صفحه می باشد.

 

این پایان نامه جهت ارائه در مقطع کارشناسی ارشد رشته مهندسی عمران طراحی و تدوین گردیده است . و شامل کلیه مباحث مورد نیاز پایان نامه ارشد این رشته می باشد.نمونه های مشابه این عنوان با قیمت های بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی ما این پایان نامه را با قیمت ناچیزی جهت استفاده دانشجویان عزیز در رابطه با منبع اطلاعاتی در اختیار شما قرار می دهند. حق مالکیت معنوی این اثر مربوط به نگارنده است. و فقط جهت استفاده ازمنابع اطلاعاتی و بالابردن سطح علمی شما در این سایت ارائه گردیده است.


دانلود با لینک مستقیم


پایان نامه کارشناسی ارشد عمرانتحلیل پایداری لرزهای سدهای وزنی بتنی ترک خورده

تحلیل پایداری مزارع بادی مبتنی بر DFIG با استفاده از سیستم با باس های گوناگون

اختصاصی از زد فایل تحلیل پایداری مزارع بادی مبتنی بر DFIG با استفاده از سیستم با باس های گوناگون دانلود با لینک مستقیم و پر سرعت .

تحلیل پایداری مزارع بادی مبتنی بر DFIG با استفاده از سیستم با باس های گوناگون


 تحلیل پایداری مزارع بادی مبتنی بر DFIG با استفاده از سیستم با باس های گوناگون

دانلود رایگان اصل مقاله انگلیسی

عنوان انگلیسی مقاله:

Stability Analysis of DFIG-based Wind Farms Using Different Bus Systems

عنوان فارسی مقاله:

تحلیل پایداری مزارع بادی مبتنی بر DFIG با استفاده از سیستم با باس های گوناگون

سال انتشار:2013

تعداد صفحات انگلیسی :5

تعداد صفحات فارسی به ورد قابل ویرایش:16

Abstract

This paper shows an overview of the power system stability of DFIG based wind farms and conventional synchronous generator. For the optimized computation, the reduced order DFIG model was used in order to restrict calculation to the fundamental frequency component. It depends on accurate model of DFIG wind generator, modal analysis, PV curves, as well as time domain simulations could be used to study the effect on system stability of replacing conventional generation by DFIG-based wind generation on the IEEE 14-bus, IEEE 30-bus, IEEE 18-bus benchmark system, for fixed power factor and voltage control operation. This paper presents the block diagram of IEEE 14 bus system by using Wind Turbine. This paper indicates that the oscillatory behavior associated with the dominant mode of the synchronous generator, is improved when the DFIG-based wind turbine is connected to the system; this improvement in the damping ratios is more evident when the wind turbines are operated with terminal voltage control

چکیده

این مقاله یک بررسی کلی در رابطه با پایداری سیستم قدرت مزارع بادی مبتنی بر DFIG و ژنراتورهای سنکرون معمولی دارد. برای محاسبه بهینه، از مدل DFIGای که مرتبه آن کاهش یافته بمنظور محدود کردن محاسبات برای مولفه فرکانس پایه استفاده میشود. این موضوع بستگی به مدل دقیق ژنراتور بادی DFIG، مدل تحلیل و منحنی های PV دارد همچنین میتوان از شبیه سازی حوزه زمان برای بررسی تاثیر آن بر روی پایداری سیستمی که تولید معمولی آن بوسیله تولید بادی مبتنی بر DFIG در سیستم پایه 14، 30 و 18 باسه IEEE برای فعالیت های ضریب توان ثابت و کنترل ولتاژ جایگزین میشود، استفاده کرد. این مقاله بلوک دیاگرام سیستم 14 باسه IEEE را با استفاده از توربین بادی ارائه میدهد. این مقاله نشان میدهد که رفتار نوسانی مربوط به مد غالب ژنراتور سنکرون، هنگامی که توربین بادی مبتنی بر DFIG به سیستم متصل میشود، بهبود پیدا میکند. این بهبود در نسبت های میرایی زمانی که توربین های بادی با کنترل ولتاژ ترمینال کار میکنند، خیلی مشهود میشود.

 


دانلود با لینک مستقیم


تحلیل پایداری مزارع بادی مبتنی بر DFIG با استفاده از سیستم با باس های گوناگون

دانلود مقاله پایداری ولتاژ

اختصاصی از زد فایل دانلود مقاله پایداری ولتاژ دانلود با لینک مستقیم و پر سرعت .

 1- مقدمه ای بر پایداری ولتاژ
با تغییر ساختار جدیدی که در سالهای اخیر در سیستمهای قدرت پدید آمده که باعث میشود ئاحدهای تولیدی توان الکتریکی هرچه بیشتری را از خطوط انتقال عبور دهند، انتظار می رود شاهد فروپاشی ولتاژ گسترده تر و بیشتر سیستم های قدرت باشیم. برای مثال عبور توان بیش از حد یک خط انتقال باعث افت ولتاژ بیش از حد و کاهش ظرفیت انتقال توان الکتریکی به بخش مشخصی از سیستم قدرت گردد. (برای کمک کرده به واحدهای تولیدی در مواجهه و مقابله با این مسئله شرکت EPRI دست به تهیه این متن زده است که توضیح کامل و مناسبی است در مورد پایداری ولتاژ، تجزیه و تحلیل، سنجش، جلوگیری و کاهش اثرات آن.
2- پایداری ولتاژ چیست؟
تعریف IEEE از پایداری ولتاژ عبارتست از توانایی یک سیستم قدرت در نگهداری ولتاژ دائمی در همه باسهای سیستم بعد از بروز اغتشاش در شرایط مشخصی از بهره برداری. اغتشاش ممکن است خروج ناگهانی یکی از تجهیزات باشد یا افزایش تدیریجی بار. هنگامی که توان الکتریکی انتقالی به بار رو به افزایش است تا بتواند بار اضافه شده را تامین کند (بار ممکن است مکانیکی، حرارتی یا روشنایی باشد9، و هر دو مؤلفه یعنی توان و ولتاژ قابل کنترل بمانند، سیستم قدرت پایداری ولتاژی خواهد بودو اگر سیستم بتواند بار الکتریکی را منتقل کند و ولتاژ از دست برود سیستم تاپایدار ولتاژ است. فروپاشی ولتاژ هنگامی رخ یم دهد که افزاییش بار باعث غیرقابل کنترل شدن ولتاژ در ناحیه مشخصی از سیستم قدرت گردد. بنابراین ناپایداری ولتاژ در طبیعت خود یک پدیده ناحیه ای است، که میتواند بصورت فروپاشی ولتاژ کلی بدل گردد بدون هیچ پاسخ سریعی.
3. موضوعات پایداری ولتاژ چه هستند؟
آگاهی در مورد مشخصات بار که از شبکه های قدرت بزرگ قابل دسترسی هستند.
• روشهای کنترل ولتاژ در ژنراتور ها، دستگاههای کنترل توان راکتیو (مانند خازنهای موازی، راکتورها) در شبکه.
• توانایی شبکه در انتقال قدرت، به خصوص توان راکتیو، از نظر تولید به نقاط مصرف
• هماهنگی بین رله های حفاظتی و ادوات کنترل سیستم قدرت.
4-در هنگام برزو ناپایداری چه اتفاقاتی می افتد؟
ناپایداری ولتاژ اغلب هنگامی رخ می دهد که بروز یک خطا ظرفیت سیستم انتقال یک شبکه قدرت را کاهش می دهتد. پس از بروز این خطا، به سرعت بار مصرفی بارهای حساس به ولتاژ افت می کند آنگونه که ولتاژ افت کرد.
این کاهش بارگیری بصورت موقتی باعث می شود که سیستم قدترت پایدار بماند. به هر حال با گذشت زمان توان مصرفی بارها افزایش خواهد یافت چرا که بسیاری از بارها بصورت دستی یا اتئماتیک کنترل میشدند تا بتوانند نیازهای فیزیکی ویژه و تعیین شده ای را برآورده کنند و همچنین نپ ترانسفورماتورهای قدرت به گونه ای تغییر خواهند کرد تا بتوان ولتاژ مورد نیاز را تامین نمود با اینکه ولتاژ در سمت ائلیه ترانس 0ولتاژ سیستم انتقال) مقدار مطلوب را نداشته باشد و از حد مطلوب پائینتر باشد. از هنگامی که بار به مقدار اولیه خود (قبل از بروز خطا) دست یافت، ممکن است سیستم قدرت وارد مرحله ناپایداری ولتاژ گردد که زمینه فروپاشی ولتاژ نیز هست. در خلال این مرحله بهره برداران (Operators) سیستم قدرت ممکن است کنترل ولتاژ و پخش بار در شبکه را از دست بدهند.
ممکن است توان راکتیو خروجی ژنراتورهای سیستم قدرت کاهش یابد تا از حرارت بیش از حد آنها جلوگیری به عمل آید، این کار باعث میگردد ذخیره توان راکتیو سیستم قدرت کاهش یابد و از دست برود. از طرفی با کاهش یافتن ولتاژ موتورها از حرکت باز می مانند که خود باعث مصرف توان راکتیو بسیاری میگردد که نهایتاً این امر فروپاشی کامل ولتاژ را در پی دارد.
5-چه چیزهایی باعث بروز فروپاشی ولتاژ در شبکه میگردند؟
از آنجایی که واحدهای تولیدی در صددذ انتقال توان هرچه بیشتر از خطوط انتقال هستند، وقوع فروپاشی ولتاژ محتمل تر است، چرا که توان راکتیو مصرفی خطهایی که بیش از حد بارگیری شده اند بیشتر است.
تجهیزاتی که بصورت پل به یکدیگر متصل هستند و همچنین موتورهای سرعت ثابت که مقدار مشخصی توان مصرف رمی کنند – حتی در مواقعی که ولتاژ کاهش می یابد – می توانند به طور موثری کاهش بار موقتی و طبیعی را که به سرعت کاهش ولتاژ شبکه رخ داده و می تواعث خروج در سیستم گردد را کاهش دهد. در پی انجام موارد فوق سیستم قدرت بص.رت ناپایدار درخواهد آمد (Whde Less Stable).
تغییر دهنده های تپ بار اثر ناپایدار کننده مشابهی دارند. برای جبران کاهش ولتاژ در اولیه سیستم، آنها با افزایش نسبت سعی در نگهداشتن ولتاژ ثانویه بصورت ثابت خواهد داتش. نتیجتاً ولتاژ در اولیه سیستم در قسمت ثانویه ظاهر نخواهد شد تا زمانی که LTC (Load Top Changer) به حد نهایی خود نرسد. علاوه بر موارد فوق عمل LTC سبب برزو افزایش توان راکتیو مصرفی در اولیه یم گردد، که باعث ناپایداری ولتاژ اولیه سیستم میگردد.
ادوات FACTS مانند SVCها و STAT COM ها می توانند از ظرفیت انتقال توان را با تامین ولتاژ بصورت اکتیو افزایش دهند اما فقط برای یک نقطه. در انتهای رنج کاری، یک تجهیز FACTS بطور ناگهانی توانایی خود را در کنترل از دست می دهد و بصورت یک تجهیز ثابت عمل می کند. توان راکتیو خروجی از یک خازن ثابت با کاهش ولتاژ نیز کم می شود (معمولاً با توان دوم ولتاژ V2). بدذون کنترل ولتاژ راکتیو، ولتاژ خط پایدار باقی نمی ماند یا اینکه به نقطه ای که فروپاشی ولتاژ در آن رخ می دهد نزدیکتر می گردد نسبت به موقعی که کنترل ولتاژ اکتیو صورت می گرفت.
به عبارت ساده تر، یک فروپاشی ولتاژ هنگامی رخ یم دهد که مقدار توان راکتیو قابل کنترل کافی وجود ندارد و در دسترس نیست تا بتوان توان راکتیو مورد نیاز سیستم قدرت و مصرف کننده را تامین نمود. اگر این نقصان در توان راکتیو به اندازه کافی بزرگ باشد، ولتاژ سیستم کاهش خواهد یافت تا سطحی که برگشت به حالت اولیه غیرممکن گردد.
یک عامل محرک یا آغازگر مورد نیاز است تا فروپاشی ولتاژ واقع گردد. برای مثال ممکن است یک خط انتقال که نقش کلیدی در شبکه ایفا می کند ممکن است به علت برزو خطا از سرویس خارج گردد. از آنجایی که خطوط باقی مانده سعی در انتقال و جبران توان اکتیو ئ راکتیو مورد نیاز دارند، کمبود توان راکتیو بیشتر شده و ولتاژ سطح پایینتری را به خود اختصاص می دهد. همچنان که کمبود توان راکتیو افزایش یابد، کاهش سطح ولتاژ بیشتر شده و خطوط بیشتری شامل خطا میشوند. در این شرایط بروز فروپاشی ولتاژ ناحیه ای یا کلی امری طبیعی است.
6. آیا انواع مختلفی از فروپاشی ولتاژ وجود دارد؟
- فروپاشی ولتاژ در درازمدت: این نوع فروپاشی هنگامی رخ می دهد که ژنراتورها و تولید کننده های توان الکتریکی از منابع بار بسیار دور هستند و خطوط انتقال به میزان زیاید بارگیری میشدند و سیستم نمی تواند ولتاژ قابل قبول را در منابع بار ارایه دهد. هنگامی که سیستم نمی تواند مقدار کافی توان راکتیو به منطقه بار انتقال دهد، برای مثال، وقتی با کاهش تولید با انتقال مواجه هستیم فروپاشی ولتاژ می تواند حادث گردد. ممکن است بروز این فروپاشی ولتاژ از چند دقیقه تا چند ساعت به طول بینجامد.
- فروپاشی ولتاژ کلاسیک: این مورد هنگامی رخ می دهد که در یک سیستم قدرت بهم پیوسته با تولید پراکند. یک خطا باعث جدا شدن سیستم گردد و سیستم قدرت دارای ذخیره توان راکتیو کافی نباشد تا بتواند نیازهای سیستم و بار مصرف کنندگان را تامین کند. هر چقدر کمبود توان راکتیو بیشتر باشد کاهش ولتاژ نیز بیشتر خواهد بود. نهایتاً ولتاژ به نقطه ای می رسد که بازگشت به حالت اولیه امکان پذیر نیم باشد و سیستم دچار فروپاشی میگردد. این واقعه می تواند بین 1 تا 5 دقیقه بعد از بروز خطا رخ دهد.
- فروپاشی ولتاژ گذرا: دو دسته فروپاشی در این قسمت وجود دارد، اما هر دو کمتر از 15 ثانیه بعد از بروز اغتشاش رخ می دهند. فروپاشی ولتاژ سریع می تواند توام با کاهش سنکرونیزم باشد یا اینکه فروپاشی هنگامی رخ یم دهد که تعداد زیادی از موتورها با هم از کار بیفتند و بخواهیم همه را با هم دوباره به راه بیاندازیم. این مورد می تواند منجر به مصرف توان راکتیو زیاید گردد و فروپاشی ولتاژ را در پی دارد.
7. تفاوت فروپاشی ولتاژ ناپایداری حالت ماندگار کلاسیک در چیست؟
با توجه به آنچه که تا اینجا گفته شد فروپاشی ولتاژ از کاهش یافتن دامنه بصورت دینامیکی نشأت می گیرد، اما متغیرهای دیگری از سیستم قدرت را نیز شامل میگردد. برای مثال زوایای ماشین نیز در فروپاشی شامل هتسند. بنابراین تفاوت دقیقی نمیتوان بین فروپاشی ولتاژ و اغتشاشات ناپایدار ساز زاویه یا کاهش پایداری حالت دائمی قایل شد، همچنین همه فروپاشی ها نسبت های مختلفی از پایداری ولتاژ و ناپایداری زاویه را در خود دارند. به خاطر داشته باشید که در بسیاری از فروپاشی های ولتاژ ناهماهنگی بین توان اکتیو و زاویهتوان راکتیو و کاهش دامنه ولتاژ در شرایط بارگیری بی شاز حد برزو می کند.
تفا.ت فروپاشی ولتاژ و ناپایداری کلاسیک حالت دائمی موارد مورد تاکید زیر است:
بحث پیرامون فروپاشیدگی ولتاژ شامل بار و دامنه ولتاژ میشود در حالی که بحث پیرامون ناپایداری کلاسیک حالت دائمی روی ژنراتورها و زاویه ها متمرکز میشود. همچنین فروپاشیدگی ولتاژ اغلب شامل دینامیک از نوع طولانی تری است و اثرات تغییرات پیوسته مانند افزایش بار بعلاوه اتفاقات گسسته مانند خروج یک خط می باشد.
8- نقش توان راکتیو در فروپاشی ولتاژ چیست؟
درست است که فروپاشی ولتاژ یک ناپایداری است که شامل بسیاری از مولفه های سیستم قدرت و متغیرهاشان میگردد اما بصورت نوعی با تامین نشدن توان راکتیو که نتیجه موارد زیر است مرتبط می باشد.
• محدودیت در امر تولید توان راکتیو 0محدودیت های ژنراتور)
• محدودیت در امر انتقال توان راکتیو (تلفات توان راکتیو با بارگیری بیشتر از خظ افزایش می یابد) اگر بارگیری از خظ زیاد شود مقدار زیادی از توان راکتیو ورودی خط که باید در بار مصرف گردد مورد مصرف توسط خط قرار می گیرد برای اینکه تلفات اضافی خط را جبران کند و افت ولتاژ در طول خط نیز افزایش می یابد.
• افزایثش بار راکتیو. میازن مصرف توان راکتیو با افزایش بار افزایش می یابد، اگر موتورها از حرکت بازایستند یا تغییری در ترکیب بار بوجود اید مانند گرما، رطوبت هوا که توسط کمپرسورهای دستگاههای هواساز جبران شدند.
• کاهش توان راکتیو شارژ خطوط انتقال با کاهش ولتاژ.
9. آیا ممکن است بتوان ناپاداری ولتاژ را پیشگویی کرد؟
بلی. دو دسته نرم افزار کامپیوتری وجود دارد که م تواند پایداری ولتاژ سیستمهای قدذرت بزرگ را تجزیه و تحلیل – و پیشگویی – کنند. پایه و اساس آنها بر پخش بار تکتیو و راکتیو حالت دائمی قرار دارد، دسته دوم نیز مبتنی بر شبیه سازی تغییرات زمانی (Time-variung simulation) هستند. علاوه بر موارد فوف روشهای ریاضی نیز وجود دارند که شامل منحنی های V-Q و
P-V ، تحلیل به روش modal و همچنین اندیسهای کارایی
(Performance indice) هستند.
- تحلیل بوسیله پخش بار:
با اینکه پایداری ولتاژ امری دینامیکی است، تحلیل پخش بار (حالت دائمی)، که روشی ساده تر و دارای محاسبات کمتری نسبت بخ اتحلیل متغیر زمانی است، بسیار ارزشمند است. تحلیلی پخش بار مختص زمانی است که مقدار بسیار زیادی از بار بصورت غیر موتوری است. این روش در مطالعات وسیعی مورد استفاده قرار می گیرد هنگامی که محدوده های پایداری ولتاژ برای حالت های قبل و بعد از بروز خطا باید تعیین گردند. همچنین این روش بطور موفقیت آمیزی در عیب یابی اتفاقات به وقوع پیوسته سیستم های قدرت واقعی بکار رفتهد است. در پی برزو یک خطا، یا در خلال افزایش بار، تحلیل پخش بار تصویر لحظه ای از سیستم قدرت را شبیه سازی می کند. این روش تحلیل برای بازه های زمانی که در ذیل آورده یم شود دارای معنی خواهد بود:
• 10 تا 30ئ ثانیه بعد از وقوع خطا: سیستم بطور نسبی ساکن خواهد شد تا نوسانات از بین بروند. کنترل تغییر دهئنده های تپا زیر بار، محدود کردن فوق تحریک و کنترل تولید خودکار آنچنان مهم نیستند. بارها نسبت به ولتاژ حساس هستند.
• 2 تا 5 دقیقه بعد از بروز خطا: ممکن است تغییر تپ زیر بار تکمیل شده باشد. رگولاسیون صورت گرفته توسط تپ صنچر در نزدیکی بارها ترمیم بارهای حساس نسبت به ولتاژ را در پی دارد. جریان میدان ژنراتورها ممکن است تا حداقل خود کاهش یابد. کنترل تولید خودکار (AGC: Automatic Generation Control) کامل می شود اگر نامتعادلی بار زیاد نباشد.
• 5 دقیقه یا بیشتر بعد از بروز خطا: بار احیا شده که اکنون از افت ولتاژ آسیب دیده توسط کنترل کننده های ترموستاتیک بازسازی میشود. کنترل تولید خودکار، دوباره برنامه ریزی تولید و پخش بار اقتصادی و همچنین دستورالعمل راه اندازی مجدد بهره برداری نیز در این مرحله باید اجرا گردند.
- تحلیل بوسیله متغیرهای زمانی:
برنامه های پایداری گذرا و همچنین برنامه های طویل المدت یات میان مدت را می توان برای تحلیل متغیر زمانی بکار برد. کاربردهای ممکن برای بکار بردن این روش تحلیل عبارتند از:
• هماهنگ کردم زمتانی تجهیزات: هنگامی که بازه های زمانی با یکدیگر همپوشانی دارند به عنوان مثال سیستم تحریک ژنراتور و کنترل گاورنر، طرح های حفاظتی پیچیده و مخصوص، SVCها، تغییرات بار ناشی از تغییرات فرکانس و ولتاژ (مانند آنچه در مورد موتورهای القایی و دستگاههای تهویه مطبوع گفته شد) و همچنین لود شدینگ تحت ولتاژ کمتر.
• شناختن و آشکارسازی هرچه بیشتر پدیده و ممانعت از بکار بردن تجهیزات اضافی: مدل سازی دامه زمانی تاکید بیشتری بر تحلیل های دقیقتر و مدل سازی دقیقتر دارد.
• تاکید بر کاهش تحلیل های استاتیک با محاسبات پیچیده.
• بهبود کیفیت شبیه سازی: به خصوص در نزدیکی مرزهای پایداری.
• شبیه سازی وقایع دینامیکی سریع مرتبط با فازها و مراحل نهایی فروپاشی ولتاژ
• تهیه و ارایه میزان کارایی سیستم با به کار بردن نمودارهای زمانی که میزان پایداری ولتاژ را نشان می دهند.
برای کسب بینش مضاعف نسبت به مکانیزم ناپایداری ولتاژ، مهندسان می توانند تحلیل مقادیر وزنی را در نقاط متعددی برای سنجش میزان ناپایداری ولتاژ بکار ببرند. برای مثال مقادیر ویژه یک سیستم خطی سازی شده می توانند محاسبه شوند تا بتوانند تصاویر لحظه ای پس از فروشناندن حالت گذرا را نشان دهند.
مقایدر ویژه بریا نشان دادن دوباره تنزل کردن نرخ پادیاری ولتاژ در هنگام تغییر تپ پیوسته نیز بکار می روند و محاسبه می شوند. (این مورد برای سیستم های قدرت واقعی کاربرد آنچنانی ندارند). به هر حال، تحلیل مقادیر ویژه یا هر نوع تحلیل که مربوط به سیستم های هطی سازی شده می باشد می تواند گاهی اوقات منجر به برزو خطا در مورد حس کردن مقدار ایمنی گردد چرا که آستانه های پایداری همیشه تحت تأثیر عناصر غیرخطی هستند مانند ژنراتورها، ادوات FACTS یا تغییر دهنده های تپ زیر بار که می توانند به نهایت مقدار عملیاتی خود برسند. علت این امر این است که تحلیل مقادیر ویژه یا هر نوع تحلیل رمبوط به سیستمهای خطی سازی شده فقط هنگامی می تواند مورد استفاده قرار بگیرد که شرایط سیستم حول یک نقطه کار ثابت تغییر می کند و تحت تغییرات و اغتشاشات کوچکی قرار دارد و می توان معادلاتا سیستم های غیر خطی را در حول آنها خطی سازی نمود. ناآگاهی نسبت به هناصر غیرخطی دینامیکی سیستم، مخصوصاً در حوالی فروپاشیدگی ولتاژ می تواند منجر به نتایج غلط و تصمیم گیری هیا اشتباه شود.
- به کار بردن منحنی های P-V و V-Q
منحنی های V-Q که اسان ترین ابزار برای تحلیل پایداری ولتاژ هستند جبه مهندسان اجازه می دهند تا مقاومت سیستم را با اضافه کردن بار راکتیو بسنجند. برای مثال منحنی V-Q در شکل 1 نشان می دهد که یک بانک خازنی شنت (موازی با شبکه) ولتاژ سیستم را افزایش می دهد و آستانه توان راکتیو را افزایش می دهد.
نحوه عملکرد در سطور زیر مشخص شده است:
* یک کندانسور سنکرون مجازی در یک باس مورد آزمایش تصور کنید. باس مورد آزمایش بصورت یک باس از نوع PV درخواهد آمد بدون هیچ محدودیتی برای توان راکتیو.
* ولتاژهای مختلفی را برای آن درنظر بگیرید.
* نمودار مقدار توان راکتیو را نسبت به ولتاژ رسم کنید.
* نمودار های V-Q را برای شرایط قبل و بعد از اغتشاش رسم کنید همچنین برای مقادیر مختلفی از بارهای مدل سازی شده
نکته: دامنه ولتاژ معنی دار مابین 9/0 تا 1/1 پریونیت می باشد. استفاده از منحنی های V-Q برای بررسی مشکلات بزرگ سیستم کاربرد آنچنانی ندارد.
منحنی های V-Q راه خوبی برای اینکه بتوان تعیین کرد که ایا ولتاژ تحت بار مشخصی پایدار خواهد بود یا خیر؟
منحنی های P-V به عنوان انتخابی دیگر در تحلیل پایداری ولتاژ در سطوح مختلف بارگذاری موثر خواهند بود.

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  47  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله پایداری ولتاژ

بررسی روش های تحلیل پایداری دینامیکی سدها

اختصاصی از زد فایل بررسی روش های تحلیل پایداری دینامیکی سدها دانلود با لینک مستقیم و پر سرعت .

یکپارچگی سازه سد می بایست در مدت عملکرد آن با وقایع احتمالی که در مدت زمان بهره برداری رخ می دهد حفظ شود. برای این منظور به بررسی طیف متناظر شرایط تنش و بارگذاری پرداخته می شود. در همه وقایع قابل پیش بینی پایداری سد می بایست با تنش های قرار گرفته در ترازهای قابل قبول و یکپارچگی هسته سد تامین شود. از آنجاییکه ضرایب اطمینان مرسوم در تحلیل پایداری تعادل حدث همچنان دارای اهمیت هستند و سایر ملاحظات مورد نظر برای دقیق بودن تحلیل یک سد خاکی، شامل قابلیت تغییر مکان، تنش های بدنه و همچنین مقاومت آن در مقابل اثرات نشت نیز باید ارزیابی گردند.

 

سال انتشار: 1392

تعداد صفحات: 16

فرمت فایل: pdf


دانلود با لینک مستقیم


بررسی روش های تحلیل پایداری دینامیکی سدها