زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پاورپوینت تلفات انرژی در شبکه های توزیع برق در 95 اسلاید

اختصاصی از زد فایل پاورپوینت تلفات انرژی در شبکه های توزیع برق در 95 اسلاید دانلود با لینک مستقیم و پر سرعت .

پاورپوینت تلفات انرژی در شبکه های توزیع برق در 95 اسلاید


پاورپوینت تلفات انرژی در شبکه های توزیع برق در  95 اسلاید

 

 

 

 

 

تلفات انرژی
منظور از تلفات انرژی در شبکه برق‌رسانی، در واقع کل تلفاتی است که شبکه در فرایند تحویل انرژی الکتریکی از تولید تا مصرف متحمل می‌شود. تولید و انتقال نیرو، تغییر سطح ولتا‌ژ، سطح ولتا‌ژ توسط پست‌های تبدیل، پست‌های توزیع نیرو، مصرف‌کنندگان برق، اعم از مشترکین خانگی، تجاری، اداری، صنعتی و کشاورزی هر کدام بخشی از انرژی را تلف می‌کنند.
یکی ازموارد مهمی که کمتر به‌عنوان تلفات منظور می‌شود، دیماند بیش ازحد مشترکین صنعتی است. بنابراین با اجرای صحیح مدیریت مصرف می‌توان بیشینه توان مصرف کننده را کاهش داده، بدون آنکه خللی در برنامه کار مصرف‌کننده به وجود آید. تلفات می‌تواند همانند نیاز مصرف باعث افزایش ظرفیت نیروگاه‌ها شود. کاهش تلفات انرژی شایسته است که کاهش تلفات توان نیز مورد توجه قرار گیرد. فزون بر آنچه گفته آمد، برای تلفات بار راکتیو نیز می‌باید شاخص اقتصادی منظور شود.
● تولید ناخالص الکتریسیته
تولید ناخالص، مقدار کل انرژی الکتریکی تولید شده در هر نیروگاه با احتساب مصرف داخلی نیروگاه است که در محل خروجی مولدها قرائت می‌شود. اگر انرژی الکتریکی از سایر شرکت‌های برق خریداری شده باشد، می‌باید در کل تولید الکتریسیته منظور شود.
● تولید خالص الکتریسیته
تولید خالص، انرژی الکتریکی تولید شده توسط ژنراتورها، منهای مصرف داخلی نیروگاه است (انرژی الکتریکی در محل خروجی نیروگاه و تحویل به شبکه جهت تامین نیاز مصرف‌کنندگان، همان انرژی یا تولید خالص است.)
● مصرف داخلی نیروگاه
انرژی الکتریکی مصرفی تجهیزات داخلی برای بهره‌برداری از نیروگاه را مصرف داخلی نیروگاه می‌گویند. در محاسبات فروش انرژی، هزینه انرژی صرف شده در داخل نیروگاه را نیز می‌باید منظور کرد. در واقع مصرف داخلی نیروگاه به‌عنوان یک مصرف کننده بزرگ می‌باید در نظرگرفته شود.
● تلفات انتقال
تلفات ناشی از مشخصه‌های الکتریکی خطوط همانند تلفات مسی، تلفات کورونا، مقره‌ها و جز اینهاست.
● تلفات پست‌های برق
انرژی الکتریکی مصرف شده به هنگام تبدیل ولتا‌ژ، افزایش یا کاهش سطح ولتا‌ژ در شبکه برق یا پست توزیع برق است.
(مصرف داخلی پست+ انرژی تحویلی به شبکه بعد- (انرژی تحویلی از شبکه = تلفات پست برق)
● تلفات توزیع
عبارت است از انرژی الکتریکی تلف شده توسط شبکه توزیع برق: تولیع اولیه، ترانسفورماتورها، توزیع، توزیع ثانویه، تلفات مربوط به مشترکین، دستگاه‌های اندازه‌گیری،انشعابات غیرمجاز و جز اینها)
● تقسیم بندی تلفات
اصولا تلفات از دو مولفه عمده تشکیل می‌شود: تلفات تاسیساتی و تلفات غیرتاسیساتی
▪ تلفات تاسیساتی
ـ تلفات تاسیساتی شامل موارد زیر است:
۱) تلفات خطوط ناشی از مقاومت رساناها
۲) تلفات ترانسفورماتور وتنظیم‌کننده ولتا‌ژ تلفات بار (تلفات مسی) تلفات بی‌باری (تلفات آهنی)
۳) تلفات هاله‌ای یا کورونا در شبکه‌های برق فشار قوی و یا شبکه‌های با ولتاژ بسیار زیاد
۴) تلفات عایقی، بویژه در کابل‌های زمینی
۵) تلفات مربوط به وسایل اندازه‌گیری انرژی الکتریکی (کنتورها)
۶) تلفات ضریب توان
۷) تلفات مربوط به افت ولتا‌ژ
۸) تلفات نامتعادلی بار
۹) تلفات بی‌باری ترانسفورماتورها در کل شبکه و تلفات ترانسفورماتورهای مونتا‌ژ داخل
۱۰) تلفات مربوط به عوامل دیگر
▪ تلفات غیرتاسیساتی
ـ تلفات غیرتاسیساتی شامل موارد زیر است:
الف) برق دزدی توسط مشترکین دارای کنتور برق
- از طریق خارج کردن کنتور از مدار
- رشوه دهی مستقیم به کنتورنویسان
- رشوه دهی غیرمستقیم به کنتورنویسان
- برق دزدی توسط مشترکینی که مصرفشان قرائت نمی‌شود
- افزایش غیرقانونی دیماند بیش از مقدار قراردادی
- انشعاب دهی غیرقانونی به واحدهای مسکونی و غیرمسکونی همجوار
ب) انشعاب گیری غیرقانونی شامل موارد زیر است:
- انشعاب‌گیری مستقیم از شبکه توزیع برق (انشعاب گرفتن از سر تیر چراغ برق)
- سوءاستفاده‌های قبلی مشترکین جدید از انرژی الکتریکی
- سوءاستفاده‌ از انرژی الکتریکی پس از انقضای قرارداد سرویس‌دهی
● علل کارکرد نادرست کنتورهای برق
- آسیب‌دیدگی کنتورها
- کالیبره یا تنظیم نبودن کنتورها
- سیم‌کشی غیراستاندارد کنتورهای برق (توسط کارکنان شرکت‌های توزیع برق)
موارد مربوط به سوءاستفاده از انرژی الکتریکی با همدستی کارکنان شرکت‌های توزیع برق
- تقلب کنتورنویسان در ثبت مقدار مصرف واقعی انرژی الکتریکی (کمترنویسی)
- صدور قبض برق، کمتر از مقدار مصرف واقعی مشترک (از طریق رایانه)
- عدم صدور قبض برق برای مشترک خاص
● و اما موارد دیگر
- مصرف برق ثبت و ضبط نشده توسط کارکنان شرکت‌های توزیع برق
- نقض قرارداد
● برآورد تلفات شبکه برق
تولید ناخالص برق= مجموع تولید شبکه سراسری و شبکه‌های جداافتاده یا ایزوله + مجموع انرژی الکتریکی خریداری شده
تولید خالص برق= تولید ناخالص برق- کل مصرف داخلی نیروگاه
تلفات انتقال اولیه= تولید خاص برق- (جمع تولید یکایک واحدهای نیروگاه: انتقال ثانویه + جمع انرژی الکتریکی تحویلی به انتقال ثانویه + جمع انرژی الکتریکی تحویل به توزیع اولیه)
تلفات انتقال ثانویه = مجموع انرژی تحویلی به انتقال ثانویه + جمع تولید یکایک واحدهای نیروگاه - (جمع انرژی الکتریکی تحویلی به توزیع اولیه + جمع انرژی الکتریکی تحویلی به توزیع ثانویه + جمع انرژی الکتریکی تحویلی به مشترکان فشار قوی)
تلفات توزیع اولیه= مجموع انرژی الکتریکی تحویلی به توزیع اولیه- (مجموع انرژی الکتریکی به توزیع ثانویه + مجموع انرژی الکتریکی تحویلی به مشترکین فشار قوی)
تلفات توزیع ثانویه= مجموع انرژی تحویلی به توزیع ثانویه- مجموع فروش انرژی الکتریکی به مشترکین
تلفات پست‌های برق= مجموع انرژی الکتریکی تحویلی به پست برق- (مجموع انرژی الکتریکی خروجی از پست + کل مصرف داخلی پست برق)
تلفات انتقال= تلفات انتقال اولیه + تلفات انتقال ثانویه
تلفات توزیع= تلفات توزیع اولیه+ تلفات توزیع ثانویه
تلفات انتقال وپست= تلفات انتقال + تلفات پست
تلفات انتقال و توزیع= تلفات انتقال+ تلفات پست+ تلفات توزیع
محاسبه درصد تلفات انرژی الکتریکی
دو روش برای محاسبه درصد تلفات انرژی وجود دارد. روش اول، برمبنای تولید ناخالص برق و روش دوم برپایه تولید خالص برق به‌عنوان درصدی از تولید خالص یا ناخالص است:
▪ درصد تلفات انتقال اولیه
۱) نسبت تلفات انتقال اولیه به تولید ناخالص برق x۱۰۰
۲) نسبت تلفات انتقال اولیه به تولید خاصx۱۰۰
▪ درصد تلفات انتقال ثانویه
۱) نسبت تلفات انتقال ثانویه به تولید ناخالص x۱۰۰
۲) نسبت تلفات انتقال ثانویه به تولید خاص x۱۰۰
▪ درصد تلفات توزیع اولیه
۱) نسبت تلفات توزیع اولیه به تولید ناخالص x۱۰۰
۲) نسبت تلفات توزیع اولیه به تولید خاصx۱۰۰
▪ درصد تلفات توزیع ثانویه
۱) نسبت تلفات توزیع ثانویه به تولید ناخالصx ۱۰۰
۲) نسبت تلفات توزیع ثانویه به تولید خاص x۱۰۰
▪ درصد تلفات پست‌های برق
۱) نسبت تلفات پست اولیه به تولید ناخالص x۱۰۰
۲) نسبت تلفات پست اولیه به تولید خالصx۱۰۰
▪ درصد تلفات انتقال
۱) نسبت تلفات انتقال به تولید ناخالص x۱۰۰
۲) نسبت تلفات انتقال به تولید خالصx ۱۰۰
▪ نسبت تلفات توزیع
۱) نسبت تلفات توزیع به تولید ناخالصx ۱۰۰
۲) نسبت تلفات توزیع به تولید خالص x۱۰۰
▪ درصد تلفات انتقال و پست‌های برق
۱) نسبت تلفات انتقال و پست‌های برق به تولید ناخالصx ۱۰۰
۲) نسبت تلفات انتقال و پست‌های برق به تولید خالص x۱۰۰
▪ درصد تلفات انتقال وتوزیع
۱) نسبت تلفات انتقال وتوزیع به تولید ناخالصx ۱۰۰
۲) نسبت تلفات انتقال وتوزیع به تولید خالص x۱۰۰
● راهکارهای کاهش واقعی تلفات
کاهش تلفات فقط به تاسیسات برق مربوط نمی‌شود بلکه انشعاب‌های غیرمجاز، برق دزدی مانند اینها را نیز دربرمی‌گیرد. بنابراین کاهش تلفات در کوتاه مدت ممکن نیست و نباید از شرکت تولید برق چنین انتظاری را داشت. کاهش تلفات نیازمند کنترل پیوسته و واقعی و نیز نظارت سازمان اجرایی برق‌رسانی در حیطه تاسیسات برق و انشعاب‌های غیرمجاز و جز اینهاست.تجزیه و تحلیل، شرکت تولید برق باید مشکلات مرتبط با تلفات در شبکه و تاسیسات برق را فهرست‌وار بنویسد و راهکارهای کاهش آن را ارائه نماید. در این مرحله، شرکت تولید برق برای کاهش تلفات لازم است وظایف را بین شرکت‌های برق منطقه‌ای، شرکت‌های توزیع نیروی برق و سایر بخش‌های سازمان برق‌رسانی تقسیم کند.
فزون بر آن شرکت تولید برق می‌باید روند کاهش تلفات را پیوسته موردبررسی قراردهد. همچنین ضروری است از کارها و اقدامات انجام شده ارزیابی سالانه، شش ماهه، دو ماهه یا ماهانه به عمل آید. در مورد تلفات غیرتاسیساتی،فقط نظارت شدید و توبیخ مشترکانی که برق دزدی می‌کنند کافی نیست، بلکه با اطلاع‌رسانی، فرهنگ سازی، مشاوره با جامعه شناسان و روانشناسان و از همه مهم‌تر حل مشکل بیکاری می‌توان تلفات غیرتاسیساتی را به سطح قابل قبولی رساند.
در بیشتر کشورهای در حال توسعه تلفات غیرتاسیساتی، سهم زیادی از تلفات انتقال و فوق توزیع را تشکیل می‌دهد.
بنابراین بسزاست که شرکت‌های برق‌رسانی، پیش از کاهش تلفات تاسیساتی به فکر کاهش تلفات غیرتاسیساتی باشند و برای کاهش تلفات غیرتاسیساتی راهکارهای فنی، اجتماعی و فرهنگی تدوین نمایند.
هنگامی که تلفات غیرتاسیساتی به اندازه قابل قبولی رسید، آن‌گاه می‌باید فعالیت‌های مربوط به کاهش تلفات تاسیساتی یعنی بازسازی و نوسازی شبکه برق را آغاز کرد. به عبارت دیگر به موازات انجام اقدامات فنی و فرهنگی مربوط به کاهش تلفات غیرتاسیساتی، ضروری است بهینه‌سازی شبکه‌های برق به منظور کاهش تلفات تاسیساتی انجام پذیرد. گفتنی است کاهش تلفات غیرتاسیساتی حتی ممکن است تا ۱۰ سال به طول انجامد.
● الگوی کاهش تلفات
الگوی کاهش تلفات برپایه تجربه به دست می‌آید. کاهش تلفات اساسا سفسطه‌آمیز است. تعمیم آن برای تمام کشورها موضوعی پیچیده و دشوار است و این به سبب تغییرات اساسی، اقتصادی، اجتماعی و موقعیت فرهنگی کشورهای مختلف است. فزون بر آن، موقعیت جغرافیایی کشورها نیز متفاوت است.
● تبادل انرژی
طبق بهره‌برداری از پخش بار اقتصادی، درصد استفاده از نیروگاه حرارتی، واقع در نزدیکی مرکز بار، کمتر است از نیروگاه اتمی دور از مرکز بار این وضعیت، تبادل انرژی را افزایش می‌دهد و این افزایش تبادل انرژی بر افزایش تلفات انتقال تاثیرگذار است. و این در حالی است که در زمینه کاهش تلفات هنوز اقدامی صورت نگرفته، زیرا تلفات هزینه‌های سوخت زیاد است
● افزایش فعالیت‌های مربوط به کاهش تلفات انتقال و توزیع
▪ وظایف دفترهای مهندسی در ارتباط با کاهش تلفات به شرح زیر است:
ـ دفتر مهندسی انتقال
۱) استفاده از ظرفیت زیاد رساناها و رسانه‌های باندل
۲) آرایش شبکه رینگKV ۳۴۵ کیلوولت به صورت خط انتقال اصلی
۳) توسعه شبکه رینگ KV۱۵۴ برای یک مرکز بار متراکم
۴) تبدیل آرایش فازی خط انتقال
(آرایش توالی فاز مثبت، آرایش توالی فاز منفی)
ـ دفتر مهندسی پست
۱) بهره‌برداری یکسان از ترانسفورماتورها در پست‌های برق در خلال مدت کم بار
۲) افزایش ولتاژ شبکه و ساده‌سازی پله‌های ولتاژ
۳) توسعه سیستم نظارت و کنترل و سیستم جمع‌آوری داده‌ها (اسکادا)
۴) نصب بانک‌های خازنی به منظور اصلاح ضریب توان
ـ دفتر مهندسی توزیع
۱) تغیر سطح ولتاژ برای توزیع اولیه و ثانویه
۲) بهبود افت ولتاژ و ضریب توان
۳) تعمیر و نگهداری
۴) اصلاح نامتعادلی بار
۵) بازدید دوره‌ای از وسایل اندازه‌گیری (بویژه کنتورهای برق)
۶) نظارت بر پست‌های هوایی (ترانسفورماتور)
۷) توسعه و توزیع ترانسفورماتورها و رساناهای با تلفات کم
● علل اصلی مربوط به تغییرات درصد تلفات انتقال و توزیع
برای هر مرحله تحویل انرژی، علل زیادی می‌تواند باعث تغییر درصد تلفات انتقال و توزیع ‌شود. که در زیر رده بندی شده است:
▪ درصد رشد یا افزایش مصرف انرژی
ـ به طور کلی تلفات انرژی را می‌توان این چنین بیان کرد:
kWh(۱۰-۳RTx)۲=Iتلفات انرژی
I: جریان بار
R: مقاومت رسانا
T: ساعت بهره‌برداری
رابطه فوق نشان می‌دهد تلفات با توان دوم درصد رشد مصرف انرژی متناسب است،‌ در صورتی که مقاومت رسانا و ساعت بهره‌برداری ثابت فرض شود. تلفات انرژی، باوجود این به طور مطلق با توان دوم درصد رشد مصرف انرژی متناسب نیست، زیرا تلفات انرژی شامل تلفات آهنی و جریان بار متغیر ترانسفورماتور زیر بار است. برای نمونه، در شرکت کره‌ای، تلفات انرژی با توان ۱/۸ درصد رشد مصرف انرژی متناسب است، زیرا ۷۸ درصد کل تلفات مربوط به تلفات مسی و ۲۲ درصد آن مربوط به تلفات آهنی است.
تغذیه مستقیم مشترکین با ولتاژ زیاد
با اصلاح محیط اجتماعی، فرهنگی و اقتصادی، درصد استفاده مشترکین خانگی از انرژی الکتریکی نیز افزایش می‌یابد. این افزایش بار باعث افزایش درصد تلفات می‌شود. برعکس افزایش مشترکین (با ولتا‌ژ زیاد) که مستقیما به پست برق متصلند درصد تلفات را کاهش می‌دهد و این به سبب جلوگیری از ایجاد تلفات در خطوط و ترانسفورماتورهای کاهنده است.
● ضریب بار
ضریب بار، نسبت بار متوسط به بار پیک است. ضریب بار زیاد بدین معناست که منحنی بار از شیب ملایمی برخوردار است. افزایش ضریب بار باعث کاهش درصد تلفات می‌شود، زیرا ضریب تلفات با توان دوم بار متناسب است.
ضریب بار در کشور کره، همانند کشورهای پیشرفته،‌ به سبب افزایش سریع بارهای برودتی مشترکین در فصل تابستان، کاهش یافته است.
برای اصلاح این وضعیت، کوشش به عمل آمده که بار پیک محدود شود و به مشترکانی، که در نیمه شب از برق استفاده می‌کنند با استفاده از تعرفه مخفف امتیازاتی داده شود. این نوع مدیریت بار، یک هدف ضمنی را دنبال می‌کند و آن جا به جایی نوبت کار در کارخانه‌ها یا عدم استفاده از وسایل و تجهیزات انرژی خوار در ساعات اوج مصرف است و در واقع ضریب بهره‌برداری از امکانات شبکه برق را مرحله‌بندی می‌کند. این روش مدیریت (مدیریت مصرف برق) از نظر اثربخشی، نقش دوم را داراست.
● کاهش تلفات و اقدامات مرتبط
در نتیجه اقدامات مختلف در زمینه کاهش تلفات و اتخاذ تدابیری که علیه برق دزدی و انشعاب‌های غیرمجاز، در بخش‌های انتقال، پست‌های برق و توزیع نیرو، تلفات اساسا کاهش خواهد یافت. فزون بر آن، وجود اشتباهات زیاد در ثبت و ضبط اطلاعات و آمار، شامل خطای اندازه‌گیری، تعویض سیستم قرائت کنتور و کنتور نویسی در زمان‌های مختلف می‌تواند بر روی درصد تلفات کل تاثیرگذار باشد. این نوع تلفات واقعی نبوده و آن را تلفات کاذب می‌نامیم.
● تلفات سیستم و تجزیه و تحلیل بار
▪ منحنی تداوم بار
برای به دست آوردن تلفات انرژی در یک پریود یا دوره زمانی منحنی تداوم بار را بر مبنای پریونیت ترسیم می‌کنند به گونه‌ای که کیلوولت آمپر پیک در خلال این دوره زمانی،‌یک پریونیت و زمان کامل پریود نیز یک پریونیت در نظر گرفته می‌شود. در منحنی تداوم بار، سطح زیر منحنی، ضریب بار را نشان می‌دهد. سطح زیر منحنی تداوم بار برابر است با توان دوم ضریب تلفات شکل زیر منحنی بار روزانه را برای یک فیدر مسکونی نمونه نشان می‌دهد. این منحنی زمانی بار را می‌توان به سطوح مربعی یکسان تقسیم کرد. زمان کل (۲۴ ساعت در این مورد) یک پریونیت است و کیلوولت آمپر پیک نیز یک پریونیت است.
تلفات شبکه برق (به طور نمونه)
هنگام تولید خالص‌ (برق) تقریبا ۹ درصد قدرت خروجی سیستم‌های مختلف برق تلف می‌شود و در محاسبات تلفات نیز نادیده انگاشته می‌شود. بنابراین، ضروری است در طراحی مهندسی شبکه‌های برق دقت زیادی به عمل آید، تا برای تامین این‌گونه تلفات سرمایه‌گذاری زیادی انجام نشود.
● اصول تجزیه و تحلیل تلفات
تلفات را معمولا برپایه دو مولفه انرژی و دیماند ارزیابی می‌کنند. یکی از نکات مهم،‌ درنظر گرفتن میزان رشد و توسعه شبکه برق در برنامه‌ریزی و طراحی است. به عبارت دیگر درنظر گرفتن هزینه تلفات توان انرژی و توان راکتیو )KVA( است. به طور کلی با سرمایه‌گذاری هنگفت می‌توان تلفات را در خطوط و تجهیزات کاهش داد.
مولفه دیماند و مولفه قدرت هزینه تلفات می‌باید هنگام تجزیه و تحلیل تلفات مورد بررسی قرار گیرد.
هزینه مولفه انرژی شامل افزایش هزینه تولید انرژی یا انرژی خریداری شده نیز می‌شود.
هزینه تلفات راکتیو نیز بسیار مهم است. تلفات راکتیو برای حداکثر نیاز بخشی از شبکه محاسبه می‌شود.
تلفات راکتیو باهزینه سالانه تجهیزات تعدیل توان راکتیو نصب شده در بخشی از شبکه محاسبه می‌شود.
ضریب تلفات نسبت تلفات متوسط به تلفات حداکثر است و برای هر بار داده شده، مقدار آن بین ضریب بار و توان دوم آن قرار دارد. معامله‌ای که غالبا برای تعیین ضریب تلفات شبکه برق به کار می‌رود عبارت است از:
LdF(( ضریب بار-a()۱)LdF( +) ضریب بار=)LsF( = a xضریب تلفات
● پراکندگی مصارف ظرفیت رزرو و تلفات
به سبب تنوع یا پراکندگی مصارف، تلفات بار پیک (در شبکه برق) نمی‌تواند درست همان زمان پیک سیستم رخ دهد. بنابراین، تنها بخشی از تلفات با پیک شبکه همزمان می‌شود. تلفات از نظر مقدار ثابت است (مانند تلفات هسته‌) و فرض می‌شود که با بار پیک تمام عناصر شبکه منطبق باشد. برای تلفات اهمی، مانند تلفات مسی، ضریب تامین پیک تلفات، مجذور ضریب تامین پیک بار همزمان است. ضریب تامین پیک به معنای ضریب مشارکت نیروگاه‌ها جهت تامین توان پیک است.
محاسبات می‌باید بر پایه ضریب همزمانی صورت گیرد، زیرا تامین پیک نامعلوم است و مولفه‌های پیک در مدت طولانی پایدار نیست. ضریب همزمانی را می‌توان باتوجه به ضریب بار عناصر سیستم برآورد کرد.
مثال: فرض می‌کنیم ضریب بار در سمت مصرف کننده برابر ۱۵ درصد و ضریب بار سیستم برابر ۵۰ درصد باشد. ضریب همزمانی در نیروگاه برابر می‌شود با : ۰/۳=۱۵/۵۰
مجذور ضریب همزمانی تقریبا برابر است با ضریب تامین پیک تلفات یعنی: ۰/۰۹=۲(۰/۳)
سرمایه‌گذاری برابر دیماند پیک می‌باید جزو ظرفیت رزرو برابر با درصد ثابت بار پیک در نظر گرفته شود.
تلفاتی که در بخشی از شبکه برق به وجود می‌آید، بار اضافی را به سایر بخش‌های سیستم تحمیل می‌کند. تلفات اضافی ناشی از بارهای بزرگتر در بقیه سیستم باید به تلفات توان و انرژی افزوده شود و برای عناصر مورد مطالعه، محاسبه شود.
مقدار مولفه‌های دیماند و انرژی می‌باید شامل اثر تجمعی افزایش تلفات باشد، که از طریق عناصر مختلف شبکه برق عبور می‌کند.
● منابع اقتصادی کاهش تلفات
در فرایند تحویل برق از مولد تا مصرف کننده، تلفاتی ایجاد می‌شود که آن را تلفات انتقال و توزیع می‌نامند. درصد تلفات انتقال و توزیع به صورت زیر محاسبه می‌شود:
روش‌های زیادی برای محاسبه کاهش تلفات انرژی وجود دارد، ولی روش منطقی‌‌تر،‌ دخالت دادن هزینه‌های سوخت است. هزینه سوخت لازم برای تولید ۱ کیلووات ساعت را می‌باید با ۱ کیلووات ساعت انرژی صرفه‌جویی شده ناشی از اقدامات کاهش تلفات انرژی مقایسه کرد.


دانلود با لینک مستقیم


پاورپوینت تلفات انرژی در شبکه های توزیع برق در 95 اسلاید

دانلود پروژه و تحقیق سیستم سوخت رسانی انژکتوری

اختصاصی از زد فایل دانلود پروژه و تحقیق سیستم سوخت رسانی انژکتوری دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه و تحقیق سیستم سوخت رسانی انژکتوری


دانلود پروژه و تحقیق سیستم سوخت رسانی انژکتوری

1ـ واحد کنترل کننده الکترونیکی Ecu) موتور(

2 ـ سنسور دور موتور

3 ـ سنسور فشار هوای منیفولد

4 ـ پتانسیومتر دریچه گاز

5 ـ سنسور دمای آب

6 ـ سنسور دمای هوای ورودی

7 ـ سنسور سرعت خودرو

8 ـ اکسیژن سنسور (فقط در خودرو پژو 206 وجود دارد)

9 ـ باتری

10 ـ رله دوبل (در خودرو پژو 206 مالتی پلکس وجود ندارد)

11 ـ کویل دوبل

12 ـ باک بنزین

13 ـ پمپ بنزین

14 ـ صافی بنزین

15 ـ ریل سوخت

16 ـ رگولاتر فشار سوخت (در خودرو پژو 206 بر روی پمپ بنزین نصب شده است . فشار آن در پژو پارس با سیستم مگنتی مارلی5/2 بار و پارس وسمند با سیستم ساژم حدود 3 بار وپیکان انژکتوری 5/3 بار است)

17 ـ انژکتور

18 ـ مخزن کنیستر (در خودروهای ما نصب نشده است)

19 ـ شیر برقی کنیستر (در خودروهای مانصب نشده است )

20 ـ دریچه گاز

21 ـ گرم کن دریچه گاز (فقط در خودروهای پارس وسمند نصب شده است)

22 ـ موتور مرحله‌‌‌‌ای دور آرام

23 ـ لامپ اخطار سیستم جرقه و انژکتور

24 ـ سوکت اتصال به دستگاه عیب یاب

25 ـ سنسور ضربه

26 ـ سوییچ فشار فرمان هیدرولیک (فقط در خودرو پژو 206 وجود دارد)

 

اجزایی که به E.C.Uپیغام ارسال می‌‌‌‌‌‌کنند:

BSI/8221 ـ ایموبیلایزر

1805 ـ رله دوبل سوم (در خودر ما موجود نیست)

1304 ـ رله دوبل (در خودرو 206 مالتی پلکس وجود ندارد)

7001 ـ سویچ فشار فرمان هیدرولیکی( فقط در خودرو 206 وجود دارد)

BBOO ـ باتری

80 ـ کلید AC کولر

C001 ـ کانکتور اتصال به دستگاه عیب یاب

1120 ـ سنسور ضربه

1313 ـ سنسور دور موتور

1312 ـ سنسور فشار هوای مانیفولد

(در خودرو 206 سنسنور فشار و سنسور دمای هوا در یک مجموعه قرار گرفته است.)

1316 ـ پتانسیومتر دریچه گاز

1220 ـ سنسور دمای آب

1240 ـ سنسور دمای هوای ورودی

1350 ـ اکسیژن سنسور ( فقط در خودرو 206 وجود دارد)

1620 ـ سنسور سرعت خودرو

 

 

 

 

 

 

فایل Word ورد 28 صفحه

 

 


دانلود با لینک مستقیم


دانلود پروژه و تحقیق سیستم سوخت رسانی انژکتوری

تحقیق درباره انرژی هسته ای

اختصاصی از زد فایل تحقیق درباره انرژی هسته ای دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره انرژی هسته ای


تحقیق درباره انرژی هسته ای

فرمت فایل:  Image result for word ( قابلیت ویرایش ) 
حجم فایل:  (در قسمت پایین صفحه درج شده )
تعداد صفحات فایل: 31

کد محصول : 0915


 

 

 قسمتی از محتوای متن Word 

 

 

انرژی هسته ای

استفاده اصلی از انرژی هسته‌ای، تولید انرژی الکتریسته است. این راهی ساده و کارآمد برای جوشاندن آب و ایجاد بخار برای راه‌اندازی توربین‌های مولد است. بدون راکتورهای موجود در نیروگاه‌های هسته‌ای، این نیروگاه‌ها شبیه دیگر نیروگاه‌ها زغال‌سنگی و سوختی می‌شود. انرژی هسته‌ای بهترین کاربرد برای تولید مقیاس متوسط یا بزرگی از انرژی الکتریکی به‌طور مداوم است. سوخت اینگونه ایستگاه‌ها را اوانیوم تشکیل می‌دهد.
چرخه سوخت هسته‌ای تعدادی عملیات صنعتی است که تولید الکتریسته را با اورانیوم در راکتورهای هسته‌ای ممکن می‌کند.

اورانیوم
 

اورانیوم فلزی رادیواکتیو و پرتوزاست که در سراسر پوسته سخت زمین موجود است. این فلز حدوداً 500 بار از طلا فراوان‌تر و به اندازه قوطی حلبی معمولی و عادی است. اورانیوم اکنون به اندازه‌ای در صخره‌ها و خاک و زمین وجود دارد

 

 

 

استخراج اورانیوم
 

هر دو نوع حفاری و تکنیک‌های موقعیتی برای کشف کردن اورانیوم به کار می‌روند، حفاری ممکن است به صورت زیرزمینی یا چال‌های باز و روی زمین انجام شود.

 

 
/images/spilit.png

(توضیحات کامل در داخل فایل)

 

متن کامل را می توانید بعد از پرداخت، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

همچنان شما میتوانید قبل از خرید با پشتیبانی فروشگاه در ارتباط باشید، و فایل مورد نظرخود را  با تخفیف اخذ نمایید.

پشتیبانی و خرید

 ربات فروشگاه به زودی راه اندازی میشود 

...

 

دانلود فایل 

 

 


دانلود با لینک مستقیم


تحقیق درباره انرژی هسته ای

تحقیق انرژی باد

اختصاصی از زد فایل تحقیق انرژی باد دانلود با لینک مستقیم و پر سرعت .

تحقیق انرژی باد


تحقیق انرژی باد

دسته بندی : علوم پایه  _ فیزیک

 

فرمت فایل:  Image result for word ( قابلیت ویرایش ) 
حجم فایل:  (در قسمت پایین صفحه درج شده )
تعداد صفحات فایل: 38

کد محصول : 1R-r


 عکس فایل

فروشگاه کتاب مرجع فایل

 

 دانلود فایل 

 


  فهرست متن Title : 

 

فهرست مطالب                                                         صفحه

 

مقدمه                                                                          1

 

فصل اول: کلیاتی دربارۀ انرژی باد                                       2

 

  • انرژی باد                                                    2
  • تاریخچه استفاده از انرژی باد                             5
  • منشاء باد                                                     7
  • توزیع جهانی باد                                             8
  • اندازه گیری پتانسیل انرژی باد                            9
  • قدرت باد                                                     10  
  • روند تحولات تکنولوژی انرژی باد در سالهای اخیر   11  
  • مزایای بهره برداری از انرژی باد                         12
  • آینده انرژی باد در ایران                                    13

 

فصل دوم: پتانسیل سنجی سطحی انرژی باد                           14

 

       2-1 پتانسیل سنجی چیست؟                                       14                                      

 

       2-2 بادسنجها و انواع آن                                          16

 

       2-3 پتانسیل باد در ایران                                          18

 

 

 

فصل سوم: استحصال انرژی از باد توسط توربینهای بادی               21

 

     3-1 انرژی باد و توربین های بادی                                   22

 

     3-3 انواع کاربردهای توربینهای بادی                                   26

 

فصل چهارم: انرژی باد و محیط زیست                                      31

 

     برق گرفتن از باد می ارزد                                               33

 

 

 


 

 قسمتی از محتوای متن Word 

 

 

پیش گفتار :

مقدمه :

گستردگی نیاز انسان به منابع انرژی همواره از مسائل اساسی مهم در زندگی بشر بوده و تلاش برای دستیابی به یک منبع تمام نشدنی انرژی از آرزوهای دیرینه انسان بوده است، از نقوش حک شده بر دیوار غارها می توان دریافت که بشر اولیه توانسته بود نیروی ماهیچه ای را به عنوان یک منبع انرژی مکانیکی به خوبی شناخته و از آن استفاده کند.

فصل اوّل : کلیاتی درباره انرژی باد :

  • انرژی باد:

انرژی باد نظیر سایر منابع انرژی تجدید پذیر از نظر جغرافیایی گسترده و در عین حال به صورت پراکنده و غیر متمرکز و تقریبا همیشه در دسترس می باشد. انرژی باد طبیعتی نوسانی و متناوب داشته و وزش دائمی ندارد. هزاران سال است که انسان با استفاده از آسیابهای بادی ، تنها جزء بسیار کوچکی از آن را استفاده می کند.

  • تاریخچه استفاده از انرژی باد :

بشر از زمانهای بسیار دور به نیروی لایزال باد پی برده و سالها بود که از این انرژی برای به حرکت در آوردن کشتی ها و آسیابهای بادی بهره می گرفت . طی سالیان دراز ثابت شده است که می توان انرژی باد را به انرژی مکانیکی و یا انرژی الکتریکی تبدیل کرد

 

 

 
/images/spilit.png

(توضیحات کامل در داخل فایل)

 

متن کامل را می توانید بعد از پرداخت، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

همچنان شما میتوانید قبل از خرید با پشتیبانی فروشگاه در ارتباط باشید، و فایل مورد نظرخود را  با تخفیف اخذ نمایید.

 ربات فروشگاه به زودی راه اندازی میشود 

 


دانلود با لینک مستقیم


تحقیق انرژی باد

دانلود تحقیق کامل درمورد بمب اتمی و انرژی اتمی

اختصاصی از زد فایل دانلود تحقیق کامل درمورد بمب اتمی و انرژی اتمی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد بمب اتمی و انرژی اتمی


دانلود تحقیق کامل درمورد بمب اتمی و انرژی اتمی

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 20

 

بمب اتمی و انرژی اتمی

بمب اتمی چگونه ساخته می شود؟ این سوالی است که امروز برای بیشتر ایرانی ها پرسشی شده است. در ابتدا به این پرسش پاسخی داده و سپس نگاهی  به طرز کار رآکتور هسته ای می اندازیم.

تمامی اشیاء و موجودات پیرامون ما از ذرات ریزی بنام اتم ویا ترکیبی از اتمها یعنی مولکول ها تشکیل شده است. اتمها ساختمانی شبیه به منظومه ی شمسی دارند که در آنها خورشید هسته ی اتم و الکترونها سیارات آن می باشند. هسته ی اتم شامل چندین ذره است که از آن میان دو تایش در این بحث مهم هستند. این دو تا پروتن ها و نوترون ها می باشند. پروتن ها دارای بار الکتریکی مثبت و نوترون ها دارای بار الکتریکی خنثی هستند. بار الکتریکی الکترونها منفی است. از میان تمامی اتمها تنها هیدروژن است که نوترون ندارد. هسته ی هیدروژن تنها یک پروتن دارد.

در اتمهای خنثی تعداد پروتن ها و الکترونها برابر است ولی تعداد نوترون ها می تواند متفاوت باشد. برخی از اتمها دارای تعداد  پروتن و الکترون یکسان ولی دارای نوترون های متفاوت اند. این نوع اتمها را ایزوتوپ همدیگر میگویند. طول عمر برخی از این ایزوتوپ ها بسیار کوتاه است. چنانکه پس از بوجود آمدن بزودی نابود می شوند. ولی برخی دیگر عمری طولانی دارند.

در ساختن بمب و رآکتور اتمی از دو ایزوتوپ استفاده میکنند. یکی ایزوتوپ هیدروژن بنام دوتریم که هسته اش شامل یک پروتن و یک الکترون است و دیگری ایزوتوپ های اورانیم می باشند. ایزوتوپ های اورانیم شامل  U235  و U238  که اولی دارای 143 و دومی دارای 146 نوترون می باشد در حالی که هردو به اندازه ی یکسان یعنی 92 پروتن دارند. ایزوتوپ U235 در ساختن بمب و رآکتور اتمی بسیار مهم است.

در طبیعت از هر 100% اتم اورانیم تنها 0.7% آن اتم U235 است که مقدار زیادی نیست. برای بدست آوردن یک کیلو گرم اورانیم U235 چندین تن سنگ معدن اورانیم لازم است. لازم به یادآوریست که برای کاراندازی یک رآکتور اتمی برای انرژی گیری از آن نیاز به اورانیم 1 تا 5 درصد غنی است. منظور از غنی کردن اورانیم اینست که مقدار اورانیم 235 آنرا بیشتر کنند. برای اینکار بایستی چندین عملیات انجام شود.

در شروع کار سنگ معدن را در اسید حل می کنند  (کیک زرد همان اکسید اورانیم است)و سپس آنرا از صافی می گذرانند و پس از آن با گاز فلور ترکیب می کنند تا گازی به اسم هگزافلورید اورانیم UF6  بدست آورند. این گاز را از صفحه های فلزی متخلخل که قطر سوراخ هایش 25 میلیاردم سانتیمتر است عبور می دهند، این عمل را دیفوزیون میگویند. در اثر این عمل گازهایی که سبکترند سریع تر از گازهایی که سنگین تر هستند از روزنه ها عبور می کنند. از این خاصیت گاز ها جهت غنی کردن، یعنی بالا بردن مقدار اورانیم 235 استفاده می کنند.  پس از این عمل با سانتریفوژهایی که ویژه ی این کار ساخته شده اند تصفیه ی مواد شروع می شود.

حال چگونه از این ماده انرژی می گیرند؟

برای انرژی گیری باز سلسله مراتبی فیزیکی صورت میگیرد. در ابتدا یک نوترون که باری خنثی دارد وارد هسته ی اورانیم 235 می شود. این عمل به این سادگی صورت نمی پذیرد بلکه برای اینکه نوترون وارد هسته شود بایستی بر خلاف تصور سرعت آن کم باشد. برای کم کردن سرعت نوترونها آنها را از آب سنگین عبور می دهند. چنانکه پیشتر اشاره شد. آب سنگین یا دوتریم از ایزوتوپ های آب سبک و یا به قول متعارف آب معمولی است. آب معمولی نمی تواند بدان مقداری که لازم است جلو سرعت نوترون را بگیرد. گیر آوردن این آب بود که آلمانی ها را به سوی نروژ کشاند و همین نیز باعث لو رفتن آلمانی ها به وسیله ی انگلیسی ها شد. انگلیسی ها در یافتند که آلمانی ها از نروژ آب سنگین می برند. بنابراین فهمیدند که آلمانی ها در صدد تولید بمب اتمی هستند. لذا با عملیاتی متهورانه مرکز تولید آب سنگین را در نروژ ویران کردند.

در برخورد نوترون به هسته ی اورانیم 235 ، هسته برانگیخته شده و سپس به دو و یا چند هسته ی سبکتر تجزیه میشود. به این عمل شکافت هسته ای می گویند. در یکی از این پروسه ها پس از برخورد نوترون به هسته ی اورانیم 235 دو عنصر باریم 138 و کریپون 95 و 3 تا نوترون ( در حقیقت برای هر 100 اتم اورانیم 235 ، تعداد 247 نوترون بوجود میآید) و حدود 200 میلیون الکترون ولت انرژی انتشار می یابد.

هر نوترون جدید تولید شده به اورانیم 235 برخورد کرده سه نوترون بهمراه انرژی و همچنین موجب سه شکافت جدید می شود. انرژیی که از این شکافت ها برای یک کیلو گرم اورانیم انتشار مییابد برابر صد ها میلیون مگاوات است. این مقدار انرژی نبایستی بیک باره آزاد شود. چرا که موجب انفجاری شدید می شود. در انفجار بمب اتمی آمریکا روی هیروشیما بمبی از همین جنس اورانیم 235 استفاده شد که قدرت تخریبی 13 کیلوتن داشت. با در نظر گرفتن اینکه هر کیلوتن برابر 1000،000 کیلو انفجار دینامیت (TNT) است. در حقیقت انفجاری معادل 13 میلیون کیلو دینامیت رخ داد. فاجعه بزرگی است ، نه؟

اگر بخواهید از این فاجعه و ننگ بشریت تصویری بهتر بدست آورید. جریان بدین شرح است:

زمانیکه بمب اتمی آمریکا به هیروشیما افتاد، جمعیت آنجا 350000 نفر بود. 200000 نفر از این جمعیت بطور مستقیم و یا غیر مستقیم جان باختند. 90% هیروشیما به ویرانه مبدل شد. ترومن رئیس جمهور وقت آمریکا خواسته بود که عکسی از این انفجار تهیه شود تا نتیجه ی این آزمایش را که تلی از آتش و کباب انسان است به چشم ببینند. هیروشیما تنها جائی بود که آنجا باران کم می بارد. صخره ای بودن ژاپن نیز مهم بود که بمب سریع به آب ننشیند. پس قرعه به اسم هیروشیمای فلک زده افتاد. عکس یادگاری این جنایت لابد یکی از اسناد افتخارآمیز آمریکاست!

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد بمب اتمی و انرژی اتمی