زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله در مورد ریاضیات گسسته

اختصاصی از زد فایل مقاله در مورد ریاضیات گسسته دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد ریاضیات گسسته


مقاله در مورد ریاضیات گسسته

لینک خرید و دانلود در پایین صفحه

فرمت: word (قابل ویرایش و آماده پرینت)

تعداد صفحات: 47

 

فهرست:

 

عنوان                                                صفحه

      مقدمه                                     1

  • جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستان    2
  • محتوای کلی ریا ضیات گسسته    3
  • تفاوت ریاضیات گسسته و حساب دیفرانسیل و ا نتگرال         4
  • مرور تاریخی مباحث مهم ریاضیات گسسته                   8
  • مفهوم جاگشت                                     8
  • اولین فن حدس زدن    8
  • دیریکله    9
  • تاریخچه اصل شمول و عدم شمول    9
  • نظریه گراف  10
  • مسئله پل کونیگسبرگ  10
  • طریقه نمایش گراف  11
  • گراف هامیلتونی                    12
  • رابطه های بازگشتی و مبادلات تفاضلی    19
  • نمودار ترسیمی روشها و مدلهای گسسته و پیوسته ریاضی           25

منابع                                     28

 

پیشرفتهای سریع تکنولوژی در نیمه دوم قرن یبستم به ویژه پیشرفتهای شگفت آور علوم کامپیوتر، مسائل جدید را مطرح کردندکه طرح و حل آنها روشها و نظریه های تازه ای می طلبد. طبیعت متناهی و گسسته بسیاری از این مسائل موجب شده است که روشها و قواعد گوناگون شمارش از اهمیت خاصی بر خوردار شوند. توفیق مفاهیم لازم برای بررسی این مسائل به کار گیری منطق ریاضی و نظریه مجموعه ها را اجتناب ناپذیر ساخته است.

معادلات تفاضلی، روابط بازگشتی، توابع مولد، از دیگراجزایی هستند ک در حل مسائل مورد بحث نقشی اساسی دارند از طرف دیگر هنگام بررسی مسائل مربوط به مدارها، شبکه های حمل و نقل، ارتبا طات بازاریابی و غیره نقش جایگزین ناپذری گرا فها قا طعانه آشکار می شود.


دانلود با لینک مستقیم


مقاله در مورد ریاضیات گسسته

تحقیق درباره ریاضیات گسسته

اختصاصی از زد فایل تحقیق درباره ریاضیات گسسته دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره ریاضیات گسسته


تحقیق درباره ریاضیات گسسته

لینک پرداخت و دانلود *پایین مطلب*

 فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه:47

تاریخچه ریاضیات گسسته

پیشرفتهای سریع تکنولوژی در نیمه دوم قرن یبستم به ویژه پیشرفتهای شگفت آور علوم کامپیوتر، مسائل جدید را مطرح کردندکه طرح و حل آنها روشها و نظریه های تازه ای می طلبد. طبیعت متناهی و گسسته بسیاری از این مسائل موجب شده است که روشها و قواعد گوناگون شمارش از اهمیت خاصی بر خوردار شوند. توفیق مفاهیم لازم برای بررسی این مسائل به کار گیری منطق ریاضی و نظریه مجموعه ها را اجتناب ناپذیر ساخته است.

معادلات تفاضلی، روابط بازگشتی، توابع مولد، از دیگراجزایی هستند ک در حل مسائل مورد بحث نقشی اساسی دارند از طرف دیگر هنگام بررسی مسائل مربوط به مدارها، شبکه های حمل و نقل، ارتبا طات بازاریابی و غیره نقش جایگزین ناپذری گرا فها قا طعانه آشکار می شود.

ریاضیات گسسته مقدماتی متنی فشرده برابر یک دوره ریاضیات گسسته در سطحی مقدماتی برای دانشجویان کارشناسی علوم کامپیوتر و ریاضیات است. مولفه های اساسی برنامه کار ریا ضیات گسسته در سطحی مقد ماتی عبارتند از : ترکیبات نظریه گرا فها همراه با کار بردهایی در چند مسئاله استاندارد بهینه سازی شبکه ها، الگوریتمهایی برای حل این مسائل مهم اتحادیه سازندگان ماشینهای محاسبه و مهم کمیته برنامه ریزی یرای کارشناسی ریا ضی بر نقش حیاتی یک دوره درسی روشهای گسسته در سطح کارشناسی که دانشجویان را به حیطه ریاضیات ترکیباتی و ساختارهای جبری و منطقی وارد کند و روی ارتباط متقابل علوم کامپیوتر و ریاضیات تأکید داشته باشد صحه گذاشته اند.


دانلود با لینک مستقیم


تحقیق درباره ریاضیات گسسته

دانلود حل مسائل ساختمان های گسسته پیام نور

اختصاصی از زد فایل دانلود حل مسائل ساختمان های گسسته پیام نور دانلود با لینک مستقیم و پر سرعت .

دانلود حل مسائل ساختمان های گسسته پیام نور


دانلود حل مسائل ساختمان های گسسته پیام نور

دانلود حل مسائل ساختمان های گسسته پیام نور

کامل ترین حل مسائل ساختمان های گسسته پیام نور

شامل : فصل اول: حساب گزاره ها و گزاره نماها و روش اثبات

فصل دوم : روابط

فصل سوم : توابع

فصل چهارم : مجموع های مرتب

فایل : پاورپوینت

 


دانلود با لینک مستقیم


دانلود حل مسائل ساختمان های گسسته پیام نور

تحقیق در مورد ریاضیات گسسته

اختصاصی از زد فایل تحقیق در مورد ریاضیات گسسته دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد ریاضیات گسسته


تحقیق در  مورد ریاضیات گسسته

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه47

 

فهرست مطالب

 

  -      مقدمه                                     1

  • جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستان 2
  • محتوای کلی ریا ضیات گسسته    3
  • تفاوت ریاضیات گسسته و حساب دیفرانسیل و ا نتگرال      4
  • مرور تاریخی مباحث مهم ریاضیات گسسته                    8
  • مفهوم جاگشت                                     8
  • اولین فن حدس زدن    8
  • دیریکله    9
  • تاریخچه اصل شمول و عدم شمول    9
  • نظریه گراف  10
  • مسئله پل کونیگسبرگ  10
  • طریقه نمایش گراف  11
  • گراف هامیلتونی  12
  • رابطه های بازگشتی و مبادلات تفاضلی  19
  • نمودار ترسیمی روشها و مدلهای گسسته و پیوسته ریاضی             25
  • منابع  28

پیشرفتهای سریع تکنولوژی در نیمه دوم قرن یبستم به ویژه پیشرفتهای شگفت آور علوم کامپیوتر، مسائل جدید را مطرح کردندکه طرح و حل آنها روشها و نظریه های تازه ای می طلبد. طبیعت متناهی و گسسته بسیاری از این مسائل موجب شده است که روشها و قواعد گوناگون شمارش از اهمیت خاصی بر خوردار شوند. توفیق مفاهیم لازم برای بررسی این مسائل به کار گیری منطق ریاضی و نظریه مجموعه ها را اجتناب ناپذیر ساخته است.

معادلات تفاضلی، روابط بازگشتی، توابع مولد، از دیگراجزایی هستند ک در حل مسائل مورد بحث نقشی اساسی دارند از طرف دیگر هنگام بررسی مسائل مربوط به مدارها، شبکه های حمل و نقل،


دانلود با لینک مستقیم


تحقیق در مورد ریاضیات گسسته

دانلودمقاله توزیع‎های احتمالی گسسته

اختصاصی از زد فایل دانلودمقاله توزیع‎های احتمالی گسسته دانلود با لینک مستقیم و پر سرعت .

 

 

 

 

 

در حالی که اغلب تعیین توزیع احتمالی برای یک متغیر تصادفی معین مفید است، بسیاری مواقع در استنباط آماری و تصمیم‎گیری توابع احتمالی متغیرها دارای یک فرم هستند. در چنین مواردی استفاده از نظریه توابع احتمالی شرح داده شده در فصل پنجم برای به دست آوردن نتایج کلی در مورد توزیع احتمالی مثل میانگین و واریانس بهتر است از به دست آوردن این مشخصه‎ها در هر حالت ویژه. زیراکسل کننده خواهد بود که در هر مورد جدید با استفاده از توزیع احتمالی یا چگالی، فرایند تعیین مشخصه‎ها مثل میانگین و واریانس را انجام دهیم. خوشبختانه به اندازة کافی همانندی بین انواع معین از آزمایشهای منحصر به فرد معلوم وجود دارد، به طوری که به دست آوردن یک فرمول که نشان دهندة ویژگی عمومی این آزمایش‎ها باشد را ممکن می‎سازد.
در این فصل بعضی از توزیع‎های احتمالی متغیرهای تصادفی گسسته مثل توزیع‎ةای دو جمله‎ای، فوق هندسی و پواسن را مطالعه خواهیم نمود و خواص آنها را بررسی می‎کنیم این توزیع‎ها از مهمترین توزیع‎های گسسته در آمار هستند که کاربرد زیادی دارند. توزیع‎های احتمالی متغیرهای پیوسته با تأکید بر توزیع نرمال که کاملاً شناخته شده است و در آمار استفادة زیادی از آن می‎شود در فصل هفتم بحث خواهد شد.
آزمایش دو جمله‎ای
بسیاری از آزمایشگاه هستند که دارای یک ویژگی عمومی بوده و آن عبارت است از اینکه نتایج آنها به یکی از دو پیشامد دسته‎بندی می‎شوند. برای مثال، «آزمایش دسته بندی یک متقاضی شغل که مرد یا زن است» دارای دو نتیجه می‎‏باشد، آزمایش پرتاب یک سکه که نتیجة آن پیشامد شیرآمدن و خط آمدن می‎باشد. تولد یک نوزاد که نتیجة آن پسر و یا دختر می‎باشد. آزمایش انتخاب یک کالای تولیدی که نتیجة آن تنها به یکی از دو صورت سالم و یا ناقص اتفاق می‎افتد.
در حقیقت این امکان همیشه وجود دارد که نتایج رخدادهایی که در زندگی روزمره اتفاق می‎افتد را به صورت دو نتیجه «موفقیت» و یا «عدم موفقیت» شرح دهیم. امتحانهایی که تنها منتج به دو نتیجه می‎شوند، نقش بسیار مهمی در یکی از توزیع‎های احتمالی گسسته که کاربرد زیادی در عمل دارد یعنی «توزیع دو جمله‎ای» ایفا می‎کنند.
قبل از این که توزیع دو جمله‎ای را معرفی کنیم، آزمایش دو جمله‎ای را شرح می‎دهیم با توجه به مثالهای بالا و مثالهایی مثل مصاحبه با یک رأی دهنده که جواب آن موافق کاندیدای مورد نظر است و یا نیست. پرتاب موشک که نتیجة آن به هدف خوردن و یا به هدف نخوردن است، ملاحظه می‎شود که صرف نظر از بعضی از تفاوتها همة آنها دارای یک مشخصة ویژه آزمایش دو جمله‎ای می‎باشند.
تعریف:
یک آزمایش دو جمله‎ای دارای فرضیات زیر است.
1-آزمایش دو جمله‎ای مرکب از n امتحان یکسان ساده است.
2-هر امتحان منتج به یکی از دو نتیجه می‎شود. یک نتیجه را موفقیت و با S نشان داده و نتیجة دیگر را عدم موفقیت و با F نشان می‎دهیم.
3-احتمال موفقیت در یک امتحان ساده مساوی P است، که از یک امتحان به امتحان دیگر ثابت باقی می‎ماند احتمال عدم موفقیت مساوی q=1-P است.
4-امتحان‎ها از هم مستقل می‎باشند.
5-علاقمند به X، تعداد موفقیتهای هستیم که در nبار آزمایش ساده مشاهده می‎شود. امتحانهای ساده‎ای که در این شرایط صدق می‎کنند به آزمایش‎های «برتولی» معروفند. در عمل فرضهای بیان شده در یک آزمایش دو جمله‎ای تنها در حالتهای محدودی وجود دارند، اما مادامی که هر آزمایش روی آزمایش دیگر اثر ناچیزی داشته باشد می‎توان نظریة دو جمله‎ای را بکار برد.
برای مثال، احتمال این که یک رای‎دهنده موافق کاندیدای معینی در یک انتخاب سیاسی رأی به دهد تقریباً از یک امتحان به امتحان دیگر ثابت می‎ماند. مادامی که جامعة رای دهندگان در مقایسه با نمونه نسبتاً بزرگ باشد. اگر پنجاه درصد جامعه 1000 نفری از رای دهندگان کاندیدای A را ترجیح به دهند، آن گاه احتمال موافق بودن اولین مصاحبه شونده به کاندیدای A مساوی خواهد بود. احتمال موافق بودن دومین مصاحبه شونده به کاندیدای A مساوی یا خواهد بود که بستگی دارد به اینکه آیا اولین مصاحبه شونده موافق بوده یا مخالف آن. هر دو عدد نزدیک به هستند، در عمل برای سومین، چهارمین و nامین انتخاب هم همین طور است در صورتی که n خیلی بزرگ باشد. اما اگر تعداد جامعه 10 و تعداد موافق کاندیداA، 5 نفر باشند، آن گاه احتمالی این که اولین رای دهنده موافق A باشد مساوی و دومین مساوی یا بستگی به این که اولی موافق یا مخالف بوده است خواهد بود. بنابراین برای جوامع کوچک، احتمال موافق بودن از یک رأی دهنده به رأی دهنده دیگر (از یک امتحان به امتحان دیگر) به طور محسوس تغییر می‎کند و نتیجتاً آزمایش دو جمله‎ای نخواهد بود.
توزیع احتمالی دو جمله‎ای
توزیع دو جمله‎ای بوسیلة مقادیر n و p که پارامترهای توزیع هستند توصیف می‎شود. پارامتر هر توزیع عبارت است از یک مشخصة جامعه. در توزیع دو جمله‎ای پارامتر n عبارت است «تعداد امتحانها» و p عبارت از احتمال موفقیت در هر امتحان ساده می‎باشد. برای هر n وp داده شده با توجه به فرضیات آزمایش دو جمله‎ای می‎توان احتمال هر تعداد موفقیت را حساب کرد و نیز می‎توان دیگر مشخصه‎های توزیع مثل میانگین و واریانس را هم به دست آورد.
برای نشان دادن این که چگونه توزیع احتمالی دو جمله‎ای حاصل می‎شود،‌فرایند تولید را در نظر بگیرید که یک وسیلة همانندی تولید می‎کند که به دو صورت سالم و یا ناقص دسته‎بندی می‎شود. وقتی که فرایند به طور درست کار نکند، احتمال ثابت 10/0=p وجود دارد که کالا ناقص تولید شود. تعداد ناقص‎ها هر مقداری از 0 تا تعداد آزمودنی (n) می‎تواند باشد. برای مثال، ممکن است سئوال شود، «احتمال این که در یک نمونة تصادفی چهارتایی یک نتیجة ناقص باشد چقدر است؟ یا احتمال این که دو یا بیشتر در یک نمونة تصادفی چهارتایی ناقص وجود داشته باشد چقدر است؟ کلمة تصادفی معادل مستقل بودن در تعریف آزمون دو جمله‎ای است.
برای محاسبة احتمالات در آزمایش دو جمله‎ای می‎توانیم از قوانین ضرب احتمال استفاده کنیم. مانند
(یک رویداد) p(تعداد رویدادهای مربوط)=(پیشامد)p
در یک مسئله دو جمله‎ای، علاقمند به محاسبة احتمال دقیقاً x موفقیت در n تکرار امتحان برنولی هستیم، که هر امتحان دارای احتمال موفقی p است. به این معنی که ما x موفقیت و n-x عدم موفقیت داریم. برای محاسبه چنین احتمالهایی، لازم است که احتمال یک رویداد از این وع را پیدا کنیم، آن گاه آن را در تعداد ممکن چنین رویدادهایی ضرب کنیم. چون فرقی ندارد کدام رویداد را ابتدا بررسی کنیم، فرضی کنید به طور اختیاری این رویداد را بررسی کنیم که در آن x موفقیت ابتدا رخ دهد، ادامه پیدا کند یا n-x (عدم موفقیت). فرض کنید موفقیت S= و عدم موفقیت F= باشد، بنابراین این رویداد ویژه به صورت زیر مرتب نمود.
SS…S FF…F
n-x عدم موفقیت x موفقیت
برای تعیین احتمال توأم چنین دنبالة ویژه‎ای از موفقیت‎ها و عدم موفقیت‎ها، توجه کنید که امتحانها فرض می‎شوند که از هم مستقل هستند. چون احتمال یک موفقیت p(S)=p و p(F)=q است، بنابراین داریم.
P(SS…S FF…F)=p(S)p(S)…p(S)p(F)p(F)…p(F)
=(p)(p)…(P)(q)(q)..(q)

می‎توان نشان داد که نشان دهندة احتمال هر دنباله‎ای است که در آن x موفقیت و n-x عدم موفقیت وجود دارد. بنابراین کافی است بدانیم چند رخ داد متفاوتی وجود دارد که در آن x موفقیت و n-x عدم موفقیت داشته باشیم. جواب عبارت است از تعداد ترکیب‎های x از n می‎دانیم این تعداد عبارت از

بنابراین حاصلضرب در احتمال x موفقیت در n امتحان را با احتمال ثابت موفقیت (p) به صورت زیر به دست می‎دهد.
(6-1) (x موفقیت در n امتحان)p

این توزیع را توزیع دو جمله‎ای گویند. اگر متغیر تصادفی X دارای توزیع دو جمله‎ای با پارامترهای n و p باشد معمولاً آن را به صورت زیر می‎نویسند.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  25  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله توزیع‎های احتمالی گسسته