
سرفصلها:
مقدمه
هوش مصنوعی چیست؟
پردازش زبانهای طبیعی بعنوان زیرمجموعهای از هوش
تکنیک ها وزبانهای برنامه نویسی هوش مصنوعی
فلسفهٔ هوش مصنوعی
مدیریّت پیچیدگی
پردازش زبانهای طبیعی
22 صفحه
در دو فرمت pdf و word
مقدمه ای بر هوش مصنوعی

سرفصلها:
مقدمه
پردازش زبانهای طبیعی بعنوان زیرمجموعهای از هوش
تکنیک ها وزبانهای برنامه نویسی هوش مصنوعی
فلسفهٔ هوش مصنوعی
مدیریّت پیچیدگی
پردازش زبانهای طبیعی
22 صفحه
در دو فرمت pdf و word

صاف کردن صنعتی
در صاف کردن صنعتی ، مقدار جامد موجود در خوراک از مقدار ناچیز تا مقدار در صد بالا متغیر است. اغلب ، قبل از صاف کردن ، روی خوراک عملیات خاصی انجام میشود تا سرعت صاف کردن بیشتر شود. این عملیات شامل گرما دادن ، تبلور مجدد و افزایش کمک صافی مانند سلولز یا خاک دیاتومه میباشد. در صنعت ، با توجه به تنوع مواد صاف شونده و نیز شرایط فراوری و اینکه عامل صاف کردن در فشار و یا در خلاء باشد، روشهای متفاوت و دستگاههای مختلف برای صاف کردن بکار میرود.
اکثر صافیهای صنعتی ، صافیهای فشاری ، صافیهای خلاء و یا صافیهای گریز از مرکز میباشد. این صافیها نیز با توجه به اینکه عمل تخلیه جامد بهصورت پیوسته و یا منقطع باشد، به صاف کردن پیوسته تا ناپیوسته تقسیمبندی میشود.
تقسیمبندی کلی صافیها
صافی کیکی یا قالبی
صافی شفاف کننده
صافی با جریان متقاطع
صافیهای قالبی یا کیکی
صافی کیکی یا قالبی ، مقادیر زیادی از مواد جامد را بهصورت قالبی از بلور یا گل جدا مینماید. در صافیهای شفاف کننده ، مقدار جامد جدا شده کم میباشد و محصول عمل ، گاز تمیز یا مایع زلال میباشد. ذرات جامد روی درون محیط صافی یا روی سطوح بیرونی آن جمع میشوند. در صافی با جریان متقاطع ، محلول سوسپانسیون خوراک با فشار و با سرعت نسبتا زیاد ، عرض محیط صافی را طی میکند.
صاف کردن و انواع صافیها
صاف کردن صنعتی
صافیهای فشاری ناپیوسته
صافی پوسته و لایه
تصفیه آب با صافی شنی تند خود شستشو
شامل 22 صفحه فایل word

فصل اول :متانول ،خواص و روشهای تولید. ۱
۱-۱-تاریخچه [۱] ۱
۱- ۲- خصوصیات فیزیکی Physical properties [1] 3
1-3- واکنشهای شیمیایی [۱] ۴
۱-۴- تولید صنعتی و فرآیند آن [۱] ۴
۱-۵-ماده خام [۱] ۹
۱-۵-۱-گاز طبیعی [۱] ۹
۱-۵-۲-باقیمانده های نفتی [۱] ۱۲
۱-۵-۳-نفتا [۱] ۱۴
۱-۵-۴-ذغال سنگ [۱] ۱۵
۱-۶-کاتالیست [۱] ۱۵
۱-۷-تولید در مقیاس تجاری [۱] ۱۵
۱-۸-واکنشهای جانبی [۱] ۱۶
۱-۹-خالص سازی [۱] ۱۷
۱-۱۰-کاربردهای متانول: [۴] ۱۸
۱-۱۰-۱-۱- تولید اسید استیک: ۱۹
۱-۱۰-۱-۲-کاربرد اسید استیک در صنایع: ۲۰
۱-۱۰-۲-تولید وینیل استات: ۲۰
۱-۱۰-۳-فرمالدئید: ۲۱
۱-۱۰-۴-اتیلن گلیکول: ۲۱
۱-۱۰-۵-متیل آمین: ۲۱
۱-۱۰-۶-دی متیل اتر: ۲۲
۱-۱۰-۷- ترکیبات کلرومتان : ۲۲
۱-۱۰-۸-متیل ترشری بوتیل الکل(MTBE). 23
1-10-9-کاربرد متانول در مخلوط با بنزین: ۲۵
فصل دوم: سینتیک و مکانیسم واستوکیومتری[۲] ۲۷
۲-۱-اصول واکنشهای کاتالیستی.. ۲۷
۲-۱-۱-مراحل مستقل در واکنشهای کاتالیستی.. ۲۷
۲-۱-۲-سینیتیک ومکانیسم واکنشهای کاتالیستی.. ۳۰
۲-۱-۳-اهمیت جذب سطحی در واکنشهای کاتالیستی هتروژن.. ۳۱
۲-۱-۴-بررسی سینتیکی.. ۳۷
۲-۱-۵-مکانیسم واکنشهای کاتالیستی هتروژن فاز گاز. ۳۹
۲-۱-۵-۱-مکانیسم Langmuir- Hinshelwood (1421 ). 39
2-1-5-2-مکانیسم Eley –Rideal 42
2-2-ترمودینامیک و سینتیک سنتز فشار پائین متانول[۳] ۴۳
۲-۲-۱-مقدمه. ۴۴
۲-۲-۲-استوکیومتری و ترمودینامیک… ۴۴
۲-۲-۳-سینتیک و مکانیسم. ۴۸
۲-۲-۴-مکانیسم. ۵۳
فصل سوم: شبیه سازی واکنش کاتالیستی هتروژنی توسط Hysys 56
3-1- مدل سینتیکی[۵] ۵۶
۳-۲-مراحل شبیه سازی رآکتور در Hysys [5] 58
3-تعریف واکنش… ۵۹
۴-مراحل نصب رآکتور. ۶۳
۳-۳-نتایج حاصله از شبیه سازی.. ۶۴
منابع : ۶۸
مصریان باستان جهت مومیایی کردن ازمخلوطی استفاده می کردند که شامل متانول نیزبود،که آنرا از پیرولیز چوب به دست آورده بودند با این وجود متانول خالص برای اولین بار توسط رابرت بویل در ۱۶۶۱ جدا سازی شد، که او آنرا Spirit of box نامید. زیرا در تهیه آن از چوب صندوق استفاده کرده بود که بعداً به Piroxilic Spirit معروف شد. در سال ۱۸۳۴ ، شیمیدانان فرانسوی آقایانJean -Baptiste وEugene Peligot عناصر تشکیل دهندة آنرا شناسایی کردند ،آنها همچنین لغت methylene را به شیمی آلی وارد کردند که واژه methu به معنای شراب واژه hyle به معنای چوب بود. سپس در سال ۱۸۴۰ واژه methyl از آن مشتق شد و جهت توصیفMethyl Alcohol استفاده شد. سپس این نام در سال ۱۸۹۲ به وسیله کنفرانس بین المللی نامگذاری مواد شیمیایی بهMethanol کوتاه شد.
در۱۹۲۳،دانشمند آلمانیMattias Pier که برای شرکتBASFکارمی کرد، طرحی را جهت تولید متانول از گاز سنتز (مخلوطی از اکسیدهای کربن و هیدروژن که از زغال به دست می آمد و در سنتز آمونیاک نیز کاربرد دارد ) ارائه کرد. که در آن از کاتالیست روی- کرم استفاده می شد و شرایط سختی از نظر فشاری (۱۰۰۰ الی۳۰۰ اتمسفر) و دما (بالای ) داشت. تولید مدرن متانول هم اکنون توسط کاتالیست هایی که امکان استفاده از شرایط دمایی کمتر را دارند، ممکن است.
متانول ( متیل الکل ) به فرمول یک مایع شفاف سفید رنگ شبیه آب است که در دمای معمولی بوی ملایم دارد . از زمان کشف آن در اواخر قرن هفدهم تاکنون مصرف آن رشد رو به فزونی داشته به طوری که اکنون با تولید سالانة تن متریک رتبه ۲۱ را در بین محصولات شیمیایی صنعتی داراست متانول گاها با عنوان الکل چوب یا ( برخی مواقع Wood Spirite ) نیز خوانده می شود که دلیل آن به تقریبا یک قرن تولید تجاری آن از خرده چوب بر می گردد به هر حال متانولی که از چوب تهیه شده باشد مواد آلوده کنندة بیشتری ( مانند استیلن ، اسید استیک ، الکل الیل ) دارد تا الکلهای صنعتی امروزی .
برای سالهای متوالی مصرف کننده اصلی متانول تولیدی ، فرمالدئید با مصرف تقریبا نیمی از متانول تولید شده بود ولی در آینده از اهمیت آن کاسته می شود زیرا مصارف جدیدی از جمله تولید اسید استیک و MTBE (که جهت بهبود عدد اکتان بنزین به کار می رود ) در حال افزایش است . از طرفی استفاده از متانول به عنوان سوخت در شرایط ویژه قابل توجه خواهد بود .
متانول معمولا در واکنشهایی شرکت می کند که از نظر شیمیایی در دسته واکنشهای الکلی قرار می گیرند از مواردی که از نظر صنعتی اهمیت ویژه أی دارد هیدروژن زدایی و هیدروژن زدایی اکسایشی متانول و تبدیل به فرم آلدئید برروی کاتالیست نقره یا مولیبدن – آهن و همچنین تبدیل متانول به اسید استیک بر روی کاتالیست کبالت یا روبیدیوم است .
از طرفی دی متیل اتر (DME) از حذف آب متانول توسط کاتالیست اسیدی قابل تولید است. واکنش ایزوبوتیلن با متانول که توسط کاتالیزور اسیدی انجام می شود و منجر به تولید متیل توشیو بوتیل اتر می شود ( که یک افزایندة مهم عدد اکتان بنزین است ) کاربرد فزاینده أی دارد .
تولید متیل استرها با کاتالیزور اسیدی از اسیدهای کربوکسیلیک و متانول انجام می شود که در آن جهت کامل کردن واکنش از استخراجی آزئوتروپی آب استفاده می شود .
متیل هیدروژن سولفات ، متیل نیترات و متیل هالیدها از واکنش متانول با اسیدهای غیر آلی مربوطه تولید می شوند .
مونو- ، دی– و تری- متیل آمین از واکنش مستقیم آمونیاک با متانول به دست می آیند .
اولین و قدیمی ترین روش تولید عمده متانول تقطیر تخریبی چوب بود که از اواسط قرن نوزدهم تا اوایل قرن بیستم به صورت عملی انجام می شد و هم اکنون در ایالات متحده دیگر انجام نمی شود. این روش تولید با توسعه فرآیند سنتز متانول از هیدروژن و اکسیدهای کربن، در دهه ۱۹۲۰ کنار گذاشته شد .
متانول همچنین به عنوان یکی از محصولات اکسیداسیون غیر کاتالیستی هیدروکربنها تولید می شد. تجربه أی که از سال ۱۹۷۳ کنار گذاشته شد .
متانول را همچنین می توان به عنوان یک محصول فرعی فرآیند Fisher-Tropsch به دست آورد تولید مدرن متانول در مقیاس صنعتی منحصراً بر پایه سنتز آن از مخلوط پر فشار هیدروژن ، دی اکسید کربن و منوکسید کربن در حضور کاتالیست فلزی هتروژنی است .
تولید مدرن در مقیاس صنعتی متانول امروزه منحصرا از مخلوط پر فشار گازهای هیدروژن و اکسیدهای کربن بر روی کاتالیت فلزی است.فشار گاز سنتز به اکتیویته کاتالیست مورد استفاده ، بستگی دارد .
طبق توافق حاصل شده، تکنولوژیهایی تولید متانول به صورت زیر دسته بندی شده اند :فرآیندهای فشار پائین (۵-۱۰ Mpa) ، فرآیندهای با فشار میانی (۱۰-۲۵ Mpa) و فرآیندهای فشار بالا (۲۵-۳۵ Mpa).
در ۱۹۲۳ شرکت BASF درآلمان اولین سنتزتجاری متانول را آغازکرد. در این فرآیند از سیستم کاتالیستی اکسید روی–اکسید کرم بهره گرفته شده بود . که این واقعه را آغاز تکنولوژی تولید فشار بالا می توان برشمرد .
در سال۱۹۲۷ در یک تلاش جداگانه تولید فشار بالای متانول در واحدهای متعلق به شرکت های Dupont و Commercial Sovents آغاز شد .
در سال ۱۹۶۵ یک واحد مدرن تولید متانول با ظرفیتی در حدود ۲۲۵-۴۵۰ t/d ، در فشار ۳۵ Mpa به طور خالصی گاز طبیعی به ازاء تولید یک تن متانول مصرف می کرد که برای فشارهای بالاتر از ۲۱ Mpa از کمپرسورهای پیستونی استفاده می شد .
در اواخر دهه ۱۹۶۰ تکنولوژی تولید فشار میانی و فشار پائین متانول با استفاده از کاتالیست با دوام و اکتیو مس – اکسید روی به صورت عملی مورد بهره برداری قرار گرفت .
شرکت ICI Ltd. در انگلستان ، سنتز فشار پائین متانول را در اواخر سال ۱۹۶۶ آغاز کرد که در آن سال یک واحد تولیدی با ظرفیت ۴۰۰ t/d در فشار ۵Mpa فقط از کمپرسورهای سانتریفوژ استفاده می کرد .
در سال ۱۹۷۱ شرکت Lurgi به صورت آزمایشی یک واحد تولیدی فشار پائین با ظرفیت ۱۱ t/d که از کاتالیست مس استفاده می کرد ، احداث نمود .
مزیتهای تکنولوژی های فشار پائین در کاهش توان مصرفی جهت افزایش فشار، عمر طولانی تر کاتالیست ها و ظرفیت تولید بیشتر بود که در کنار آن می توان به ظرفیت single–train بیشتر و اطمینان از عملکرد اشاره کرد ، که با فشار بالا در تناقض هستند.
از سال ۱۹۷۰ به بعد علی رغم برخی استثناءها هرگونه توسعه واحدهای تولید متانول با استفاده تکنولوژی فشار پائین یا میانی بوده است. درسال ۱۹۸۰ ، ۵۵% تولید متانول در ایالات متحده با استفاده از سنتز فشار پائین بوده و ازآن به بعدواحدهای فشار بالا با تکنولوژی فشار پائین اصطلاحاً “revamp” شده اند، یا اینکه به کل تعطیل شدند .
یک واحد معمول تولید فشار پائین – میانی در سال ۱۹۸۰ با ظرفیت ۱۰۰۰-۲۰۰۰t/d در فشاری در حدود ۸-۱۰ Mpa عمل می کند و در یک فرآیند single – train فقط از کمپرسورهای سانتریفیوژ بهره می برد و جهت تولید ۱ تن متانول گاز طبیعی مصرف می کند .
تنها نوآوری جدیدی که در افق دیده می شود ، فرآیند سه فازی شرکت Chem System است . یک مایع بی اثر جهت سیال سازی کاتالیست و خارج کردن حرارت از سیستم به کار گرفته شده است . ادعا شده است که درصد تبدیل بدون “recycle” این فرآیند ازدرصد تبدیل فرآیند دو فازی معمولی بالاتر است .
[۶]امروزه سه نوع فرآیند به طور عمده در جهان جهت کید متانول مورد استفاده قرار می گیرند که عبارتند از :ICI ، Lurgi ، Mitsubishi
رآکتور طراحی ICI از تعدادی بسترهای کاتالیست ثابت آدیاباتیک تشکیل شده واز گاز سرد خوراک جهت خنک کردن واکنشگرهای بین بسترها استفاده می شود .این باعث ایجاد جهشهایی در پروفیل دمای رآکتور می شود که در شکل دیده می شود .رآکتورهای طراحی شرکت های Lurgi و Mitsubishi پروفیل دمای افقی تری دارند که تقریبا رآکتور را Isothermal می توان فرض کرد که این در اثر تولید مقدار قابل توجهی بخار فشار بالا خواهد بود .غیرفعال شدن کاتالیست در رآکتورهای همدما کندتر خواهد بود.
خوراک معمول جهت تولید گاز سنتز مورد نیاز برای تولید متانول گاز طبیعی و باقیمانده های نفتی است . از دیگر خوراک های مناسب می توان به نفتا و ذغال سنگ اشاره کرد .
گاز طبیعی ، باقیمانده های نفتی و نفتا در مجموع ۹۰% ظرفیت جهانی تولید متانول را تأمین می کنند باقیمانده مربوط به گازهای زائد از فرآیندهای متفرقه است ( off-gas ) .
درفرآیند مدرن تولید متانول ازگاز طبیعی ، گازطبیعی که قسمت اصلی آن را متان تشکیل می دهد سولفورزدایی می شود (حداکثر مقدار سولفور کمتر از ۰٫۲۵ ppm ) و با بخار مخلوط می شود و تا دمای پیشگرم می شود . مخلوط به reformer فرستاده می شود و در آنجا در لوله های حاوی کاتالیست غنی شده از نیکل که از بیرون با شعله Burner ها در تماسند، جریان می یابد .
که شرایط تعادل باید در دمای و فشار ۰٫۷-۱٫۷ Mpa در نظر گرفته شود.واکنش کلی بسیار گرماگیر است و به مقادیر زیادی سوخت جهت مشعل ها نیاز است .
گرمایی که ازreformer توسط گاز سوخت شده و گاز سنتز تولید شده خارج می شود ، جهت تولید بخار با فشار ۴-۱۰ Mpa (بخار HHPS) استفاده می شود که به نوبه خود در تأمین نیروی محرکه (توربینها) و بار حرارتی برجها ، کاربرد دارد . که در کاهش مصرف انرژی کلی فرآیند نقش قابل توجهی دارد .
گاز سنتزی که در Steam reformer از گاز طبیعی به دست می آید نسبت به استوکیومتری واکنش تولید متانول ، مقدار بیشتری هیدروژن دارد . استوکیومتری واکنش سنتزمتانول خوراکی با نسبت در حدود ۱٫۰۵ دارد در حالی که در مخلوط تولیدی از Steam reformer ، این نسبت (اگر به مخلوط اضافه شود ) در حدود ۱٫۴ است. در کاتالیست فرآیند فشار پائین ، این مقدار اضافی هیدروژن ، موجود بهبود عملکرد کاتالیست می شود .
به این جهت هزینه های converter پائین می آید در حالی که در فرآیندهای فشار بالا باید هیدروژن از مخلوط جدا شود که خود مستلزم هزینه و عملیات خاص است . هیدروژن اضافی پس از مرحله سنتز به عنوان سوخت در reformer مورد استفاده قرار می گیرد . بنابراین راندمان کلی انرژی در سطح بالایی نگه داشته می شود که موجب اقتصادی بودن فرآیند خواهد شد .
در طراحی واحد تولید متانول از گاز طبیعی در فشار پائین می توان اضافه کردن را به مخلوط حاصل از reforming ، را در نظر گرفت . که مزیت آن در استفاده از هیدروژن اضافی جهت کاهش مصرف گاز طبیعی به ازاء تولید هر تن متانول متانول است . با توجه به اینکه ماده گرانقیمتی نیست .
اضافه کردن مقدار کافی از باعث بهبود سنتز از نظر استوکیومتری می شود مانند آنچه در مورد خوراک نفتا وجود دارد .بازیافت از گاز سوخته شده در reformer اقتصادی گزارش نشده است .

این فایل در قالب ورد و قابل ویرایش در 110 صفحه می باشد.
فهرست مطالب
عنوان صفحه
فصل اول
مقدمه ….…..…………………………………….1
مشخصات ماکروسکوپی و میکروسکوپی گونه راش….…...4
فصل دوم
2-1 سابقه تحقیقات درزمینه میزان رطوبت،هم کشیدگی و
وزن مخصوص.………………………………….15
2-2 سابقه تحقیقات خارجی..……………………….24
فصل سوم
شرح کامل طرح پژوهشی با ذکر روش و نحوه اجرا……...34
3-1 تعیین تغییرات همکشیدگی خطی..…….……….34
3-2 تعیین تغییرات مواد استخراجی..…….………….35
فصل چهارم
خصوصیات محل و خاک و آب و هوای گونه های همراه در مورد نمونه های مورد آزمایش(جنگل خیرودکنار(منطقه نم خانه) ………….38
4-1 موقعیت جغرافیایی………………………………..38
4-2 آب و هوا……………………………………….. 39
4-3 خاکشناسی جنگل خیرود(نم خانه)….………………41
4-4 زمین شناسی …………………………………….45
4-5 لیست گونه های گیاهی…….….………………..…47
4-6 گونه ها و خانواده و جنس گیاهان که در جنگل
خیرود نم خانه ….….……………………………….49
4-7 تیپ مورد شناسایی در نم خانه….…..…………….62
مشخصات پارسل بخش نم خانه…...……………………64
فصل پنجم
5-1 هم کشیدگی و واکشیدگی…..……………………65
5-2 عوامل موثر بر هم کشیدگی و واکشیدگی…...………67
5-3 عوامل موثر بر روی هم کشیدگی و واکشیدگی….……….70
5-4 تئوریهای غیر یکنواخت بودن هم کشیدگی و واکشیدگی.…73
5-5 اندازه گیری میزان هم کشیدگی……………………….77
5-6 مقدار هم کشیدگی خطی….………………………….79
جداول ضمیمه……………………………………………82
ماکزیمم همکشیدگی خطی ……………………………….97
ماکزیمم همکشیدگی شعاعی………………………………98
ماکزیمم همکشیدگی مماسی………………………………100
نتیجه گیری…………………………………………….103
فهرست منابع و ماخذ……………………………………104
مقدمه :
درخت راش از خانواده Fagus جنس Fagus می باشد 13 گونه از این جنس در دنیا آنهم در نمیکره شمالی انتشار دارد و در ایران یک گونه به نام فاگوس orientalis وجود دارد و گونه راش ایران Fagus orientalis از مهمترین و با ارزشترین درختان صنعتی ایران و حدود 32درصد موجودی سرپای شمال ایران (طبق آمار در سال 1371) از اینگونه است و با داشتن تنه ای صاف و استوانه ای که ارتفاع آن به حدود 40 متر و گاه بیشتر و قطر حداکثرm5/1تاm 8/1می رسد . و جنگلهای پر ارزشی را در ارتفاعات شمالی رشته کوه البرز تشکیل می دهد و از آستارا و طوالش و دیلمان تا کلاردشت، نور،کجور تا گرگان دیده می شود و در جنگلهای نور تا ارتفاع 2200 متر از سطح دریا بالا رفته و در بعضی دره ها مثل دره نکاء تا دامنه های پایین بندر دیده می شود.
راش درختی است با تنه ای استوانه ای و صاف که ارتفاع آن 40 متر و گاهی بیشتر و قطر آن به حداکثرm5/1تاm 8/1می رسد و پوست تنه صاف و خاکستری روشن است و جوانه ها کشیده و نوک تیز با فلسهای طلائی رنگ می باشد و قسمتی از فلسها در پشت خود کرکهای سفیدی دارند و برگهای در داخل جوانه تا شده Condaplicate هستند و با زاویه انحراف و عموما برگهای بیضوی یا تخم مرغی با حاشیه صاف و کمی موجدار با کرکها ی ابریشمین درحاشیه برگها و درمحل رگبرگها این کرکها بیشترند و تعداد رگبرگها در شناسایی گونه های مختلف راش خیلی مهم است و بطورئیکه راشهای ایران 14-11 جفت و بیشتر 13 جفت رگبرگ دارند و گلها یک پایه و شاتون کروی و با دمبرگهای نسبتا کوتاه که به حالت آویزان در می آیند . گلهای ماده معمولا به تعداد 2 عدد (3-1 عدد) در داخل گریبانه ای قرار می گیرند و تعداد خامه 3 عدد دانه ها 3 بخشی و منشوری شکل هستند که وقتی گریبانه با 4 شکاف شکفته می شوند نمایان می گردند و رویش بذر آنهم برون در (Epige) می باشد.
درخت راش در توده های جنگلی معمولا قبل از سن 70-60 سالگی میوه نمی دهد اما به صورت تک درخت این زمان 40-30 سالگی است و بازدهی فراوان آن هر 90-30 سال است و معمولا نهالهای جوان سایه درختان مادری را به خوبی تحمل می کنند و رشد نهالها تا سن 10-8 سالگی خیلی بطئی و پس از آن سریع می باشد.
و اما چوب آن که از جمله چوبهای بازار پسند و مرغوب درختان جنگلی می باشد و همگن و پراکنده آوند بوده و می تواند یک بخش از نیمه روزنه ای را نشان دهد . با چوب درون کاذب که معمولا دل قرمزی و در درجه بندی چوب راش چنانچه قطر آن از cm 12 تجاوز کند عیب محسوب می گردد که در وسط گرده بینه راش یا مرکز مقطع دیده می شود حفرات آوندی به تعداد 2 تا 4 عدد به هم چسبیده اند و حاوی تیل می باشد و اشعه های چوبی همگن و پهنی آنها متفاوت است و تقریبا در هر میلی متر 6 عدد دیده می شود.
بافت فیبری فراوان و متراکم بوده و حد دوایر سالانه به علت وجود بخشی از فیبرهای فشرده تر واضح می باشد.

غشاء سلولی؛ ساختمان، شکل گیری و عملکرد
غشاءهای سلولی حالتی غلیظ و چسبناک داشته، و در عین حال همانند پلاستیک ها مقاوم بوده و استحکام دارند. غشاءهای پلاسمائی فضاهایی بسته پیرامون پروتوپلاسم سلولی تشکیل می دهند و سلولها را از یکدیگر جدا می نمایند. قابلیت نفوذ غشاهای پلاسمائی انتخابی است بدین معنی که همانند سدی عمل نموده و اختلافات موجود، بین ترکیب داخل و خارج سلولی را حفظ می نمایند، این نفوذپذیری انتخابی در مورد یون ها و سوبستراهای مختلف به کمک کانال ها و پمپ های شیمیائی و برای پیام ها (هومون ها) توسط پذیرنده های خاصی انجام می پذیرد.
غشاهای پلاسمائی قادرند به کمک پدیده های برون ریزی (Exocytosis) و درون ریزی (Emdocytosis) تبادلاتی با محیط خارج سلولی برقرار نمایند، علاوه بر این در ساختمان غشاها مناطق خاصی بنام انشعاب های شکافی
وجود دارد که امکان برخی تبادلات با سلولهای همجوار را فراهم می سازد.
در داخل سلول نیز غشاءها اندامک های داخل سلولی را تشکیل می دهند که دارای اشکال و وظایف کاملاً متمایزی می باشند؛ مانند میتوکندریها، تورینه های درون پلاسمائی، و دستگاه گلژی، شبکه سارکوپلاسمی، گرانول های ترشحی، لیزوزومها و غشاهای هسته ای. غشاها می توانند آنزیم هائی را در مکان هائی خاص در خود جای داده و همچنین می توانند به عنوان جزئی لازم و مکمل در جفت شدن پدیده تحریک – پاسخ ( شرکت نموده و نیز جایگاهی برای جابجا شدن انرژی در واکنش هائی مانند فتوسنتز و فسفوریلاسیون اکسیداتیو فراهم نمایند.
این فایل کاملا اصلاح شده و شامل : صفحه نخست ، فهرست مطالب و متن اصلی می باشد و با فرمت ( word ) در اختیار شما قرار می گیرد.
(فایل قابل ویرایش است )
تعداد صفحات:124