زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله در مورد ترانسفورماتور

اختصاصی از زد فایل مقاله در مورد ترانسفورماتور دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد ترانسفورماتور


مقاله در مورد ترانسفورماتور

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 7

 

ترانسفورماتورهای جریان و ولتاژ جدید

ترانسفورماتورهای ولتاژ و جریان مطرح شده در بخش های قبل همگی مبتنی بر اصول الکترومغناطیسی و استفاده از هسته ی مغناطیسی می باشند . هم اکنون روش های زیادی جهت انتقال کمیت اندازه گیری شده با استفاده از تجهیزات نوری تدوین شده اند .

ترانسفورماتور و جریان و ولتاژ نوری

دیاگرام شکل 4-12 خصوصیات اصلی و دیاگرام عملکردی یک ترانسدیوسر نوری را نمایش می دهد . مبدل های نوری و کانال های فیبر نوری ارتباط میان حسگر و خروجی فشار ضعیف برقرار می سازند . تفاوت بنیانی میان ترانسدیوسرها و ترانسفورماتورهای اندازه گیری متداول , نیاز به یک واسط الکترونیکی جهت عملکرد آنها می باشد . این واسط جهت انجام وظیفه ی حسگری و تطابق فناوری جدید حسگر با جریان ها و ولتاژهای ثانویه مورد نیاز می باشد .

ترانسفورماتور ولتاژ با جریان

ترانسدیوسرهای نوری غیرمتعارف خود در ادوات کوچک تر و سبک تر قابل استفاده می باشند . اندازه ی کلی و توان نامی مورد نیاز این ادوات تاثیر قابل توجهی بر روی اندازه و پیچیدگی حسگر ندارد . انکان دارد که ساختارهای عایقی کوچک و سبکی جهت نگهداری تجهیزات حسگر به عنوان جزئی از یک عایق تعبیه شوند . به علاوه , در این جا مسائل مربوط به اثرات غیر خطی و تداخل الکترومغناطیسی در سیم پیچ ثانویه ی ترانسفورماتورهای ولتاژ و جریان متداول به حداقل می رسد .

ترانسدیوسرهای نوری را می توان به دو گروه تقسیم کرد . گروه اول ترانسدیوسرهای هیبرید که در آنها مدارهای الکتریکی متداولی که با مبدل های نوری مختلف در ارتباط می باشند , مورد استفاده قرار گرفته اند . گروه دوم ترانسدیوسرهای کاملا نوری می باشند که بر اساس اصول پایه ای حسگرهای نوری پایه ریزی شده اند .

مفاهیم حسگر نوری

رسانه های حساس به نور خاصی ( شیشه , بلورها و پلاستیک ) نسبت به میدان های الکتریکی و مغناطیسی از خود حساسیت نشان می دهند . به گونه ای که بعضی خصوصیات پرتو نور هنگامی که از داخل آنها عبور می کند , تحت تاثیر قرار می گیرد . اجزای یک ترانسدیوسر نوری ساده در شکل 4-13 نمایش داده شده اند .

حالتی در نظر گرفته شود که پرتو نور از دو فیلتر پلاریزه کننده عبور می کند . در صورتی که محور فیلترهای پلاریزه کننده ی ورودی و خروجی نسبت به هم 45 درجه اختلاف داشته باشند , تنها نیمی از نور عبور خواهد کرد . شدت نور ورودی مرجع در تمامی زمان ها ثابت می باشد . حال اگر این دو فیلتر ثابت مانده و یک فیلتر پلاریزه کننده ی سوم میان آنها اضافه گردد , یک گردش اتفاقی پلاریزه کننده ی میانی در جهت ساعت گرد یا پاد ساعت گرد متناسب با شدت میدان صورت می پذیرد . به این ترتیب شدت پرتو نور خروجی متناسب با شدت میدان مدوله می شود .

هنگامی که یک ماده ی حساس به نور ( شیشه یا بلور ) در معرض یک میدان مغناطیسی یا الکتریکی متغیر قرار می گیرد , نقش پلاریزه کننده ی فرد را ایفا می کند . تغییرات میدان مغناطیسی با الکتریکی که حسگر نوری در معرض آنها می باشد , به صورت تغییرات شدت پرتو نور ورودی که به آشکارساز نوری می رسد , مورد پایش قرار می گیرد . شدت نور خروجی حول سطح شدت میدان صفر که برابر 50 درصد شدت نور ورودی مرجع است , نوسان می کند . در انتها , شدت نور مدوله شده با توجه به حضور میدان های متغیر , دوباره به جریان ها با ولتاژهای متغیر تبدیل می گردد .

ترانسدیوسرها از حسگر اثر مغناطیسی _ نوری جهت اندازه گیری نوری جریان استفاده می کنند . این امر نشان می دهد که حسگر اساساً به جریان حساس نمی باشد بلکه نسبت به میدان مغناطیسی تولید شده توسط جریان حساسیت نشان می دهد . هر چند که تجهیزات کلاماً نوری قابل دسترس می باشند , اکثر ترانسدیوسرهای جریانی تجاری در دسترس بر اساس حسگر شیشه ای عمل می کنند . از سوی دیگر اکثر ترانسدیوسرهای ولتاژی دارای حسگرهای الکتریکی – نوری می باشند . این امر بیانگر این حقیقت است که حسگر مورد استفاده به میدان القاء شده حساس می باشد .

ترانسدیوسرهای هیبرید

ترانسدیوسرهای هیبرید جدید را می توان به دو نوع تقسیم کرد . ترانسدیوسرهایی که دارای حسگرهای فعال و آنهایی که دارای حسگرهای غیرفعال می باشند . اصل عملکردی ترانسدیوسرهای دارای حسگر فعال , تبدیل خروجی ترانسفورماتور اندازه گیری متداول موجود به یک خروجی نوری ایزوله با استفاده از یک سیستم مبدل نوری می باشد . ممکن است که این سیستم تبدیل , نیاز به منبع تغذیه داشته باشد , از این رو به آن حسگر فعال اطلاق می شود . استفاده از یک سیستم ایزوله کننده ی نوری موجب مجزا شدن جریان ها و ولتاژهای خروجی ثانویه ی ترانسفورماتورهای اندازه گیری می گردد . از این رو ارتباط میان اتاق کنترل و تجهیزات کلید زنی تنها از طریق یک کابل نوری برقرار می گردد .

ترانسدیوسرهای کاملاً نوری

این ترانسفورماتورهای اندازه گیری کاملاً مبتنی بر مواد حساس به نور ساخته شده اند و کاملاً غیرفعال می باشند . عمل حس کردن به صورت مستقیم از طریق ماده ای حساس به نور و یک کابل نوری به دست می آید . این کابل میان واحد اصلی و موقعیت نصب حسگر قرار گرفته و ارتباط مخابراتی را فراهم می کند .

عنصر حس کننده از جنس مواد حساس به نور بوده که در داخل میدان الکتریکی یا مغناطیسی مورد اندازه گیری قرار می گیرد . در مورد تجهیزات اندازه گیری جریان , عنصر حساس حتی به طور آزادانه در داخل میدان مغناطیسی قرار می گیرد . این عنصر را می توان در داخل فاصله ی هوایی هسته ی مغناطیسی نیز قرار دارد . در مورد تجهیزات اندازه گیری ولتاژ گزینه های مشابهی وجود دارند . با این تفاوت که در این جا حسگر نسبت به میدان های الکتریکی حساس می باشد . امکان ترکیب هر دو حسگر در داخل یک محفظه وجود دارد . به این ترتیب ترانسفورماتورهای ولتاژ و جریان در داخل یک محفظه تعبیه می شوند , که موجب صرفه جویی در فضا در داخل پست می گردد .

در تمامی حالات یک فیبر نوری عهده دار انتقال نور مرجع از منبع به واسط و فیبر نوری دیگر عهده دار انتقال نور انعکاسی به مدار تحلیل کننده می باشد . برخلاف ترانسفورماتورهای اندازه گیری متدال مستقل , ترانسفورماتورهای اندازه گیری نوری نیازمند یک واسط الکتریکی جهت عملکرد خود می باشند . از این رو حسگر این نوع ترانسدیوسرها (مواد حساس به نور) غیرفعال می باشد . با این وجود صحت عملکرد آنها منوط به واسطی است که در اتاق کنترل تغذیه می شود .

سیستم های حسگر دیگر

سیستم های دیگر ی نیز جهت اندازه گیری ولتاژ و جریان خطوط مطرح شده اند که در این جا معرفی می شوند .

ترانسفورماتور جریان با شار صفر ( اثر هال )

در این حالت عنصر حس کننده یک ویفر نیمه هادی که در داخل فاصله ی هوایی یک هسته ی مغناطیسی قرار داده شده است . این نوع ترانسفورماتورها نسبت به جریان های مستقیم نیز حساس می باشند . این ترانسفورماتور نیازمند یک منبع تغذیه است که از طریق خط با منبع تغذیه ی جداگانه ای تغذیه می شود . معمولاً حداقل جریان قابل اندازه گیری در این ترانسفورماتور برابر 1/0 درصد جریان نامی می باشد . در ساده ترین حالت , ولتاژ ایجاد شده توسط اثر هال به طور مستقیم با جریان مغناطیسی مورد اندازه گیری متناسب می باشد . در کاربردهای دقیق تر و حساس تر , جریان از طریق یک ثانویه , سیم پیچ با چند دور , تامین می گردد که در اطراف حلقه ی مغناطیسی جهت متعادل کردن میدان مغناطیسی فاصله ی هوایی قرار گرفته است . با استفاده از این تجهیزات , امکان اندازه گیری بسیار دقیق جریان های مستقیم و با فرکانس بالا فراهم می آید .

حسگر هیبرید مغناطیسی _ نوری

این نوع از ترانسفورماتورها اغلب در مورد خطوط انتقال بلند جبران سازی شده توسط خازن سری مورد استفاده قرار می گیرند در این مورد نیاز به اندازه گیری جریان زمین نشده وجود دارد . در این حالت تعدادی حسگر جریان بر روی هر فاز مورد نیاز می باشد تا حفاظت در مقابل موج های ضربه ای خازن و تعادل را فراهم کنند . راه حل ترجیحی استفاده از ترانسفورماتورهای دارای هسته ی مغناطیسی به شکل نوروئید که به سیستم های ایزوله کننده ی فیبر نوری متصل شده اند , می باشد . این حسگرها معمولاً از نوع فعال می باشند زیرا که سیستم ایزوله کننده نیاز به منبع تغذیه دارد . این ترانسفورماتور در شکل 4-17 نشان داده شده است .

سیم پیچ های روگوسکی

سیم پیچ روگوسکی براساس ترانسفورماتور دارای هسته ی هوایی با امپدانس بسیار بالا طراحی شده است . سیم پیچ ثانویه بر روی تروئیدی از جنس عایق پیچیده می شود . در اغلب موارد سیم پیچ روگوسکی به یک تقویت کننده متصل می گردد . این امر به دلیل فراهم آوردن انرژی کافی جهت تجهیزات حفاظتی و اندازه گیری متصل شده و تطبیق امپدانس ورودی این دستگاه می باشد . سیم پیچ روگوسکی نیازمند یک پارچه سازی میدان مغناطیسی است که در نتیجه دارای تاخیر زمان و فاز به علت انجام این یک پارچه سازی می باشد . این خطا را می توان در داخل رله ی دیجیتال تصحیح کرد .

هدف از این استاندارد , ارائه معیارهای مهندسی جهت انتخاب ترانسفورماتور جریان در پستهای 230 و 400 کیلو ولت می باشد , بطوریکه مشخصات آن به صورت بهینه تعیین می گردد .

دامنه کاربرد

این استاندارد , تنها در ارتباط با ترانسفورماتورهای جریان از نوع روغنی می باشد .

نیازها و خواسته ها

کلیات

ترانسفورماتورهای جریان تبدیل جریانهای با دامنه زیاد به جریانهائی که به راحتی و یا مصرف انرژی ناچیز (تلفات اندک) با دستگاههای اندازه گیری فشار ضعیف قابل اندازه گیری است بکار می روند . ترانسفورماتورهای جریان در کلیه شرایط عادی و غیرعادی به شبکه متصل هستند . بنابراین اثرات تمامی موارد مربوط به شرایط فوق نباید سبب خرابی یا عدم دقت آنها شود . ترانسفورماتورهای جریان باید قابلیت تحمل جریان اتصالی و دقت مناسب را در حالت گذرا ( به استثنا’ ترانسفورماتورهای جریان اندازه گیری که دقت آن را در شرایط خطا تضمین نمی گردد ) داشته باشند .

از اولیه ترانسفورماتور جریان در شرایط عادی شبکه جریان کاری شبکه عبور می کند و جریان ثانویه از نظر اندازه دامنه درصدی از جریان اولیه و هم فاز با اولیه می باشد که البته در حالت غیرایده آل , خطای ترانسفورماتور سبب می گردد که چنین نباشد .

ترانسفورماتور جریان در شبکه قدرت به دو منظور عمده بکار می رود :

1- اندازه گیری جریان به منظور اندازه گیری توان عبوری از یک نقطه و اطلاع از وضعیت شبکه از لحاظ عبور جریان در آن نقطه . در این حالت به ترانسفورماتور جریان, ترانسفورماتور اندازه گیری گفته شده که به دستگاه های انازه گیری وصل می شود و آنچه که در این حالت بیشتر مورد نظر است , شرایط عادی شبکه است و نیازی به دقت در شرایط غیرعادی از قبیل اتصال کوتاه و غیره نمی باشد .

2- استفاده از ترانسفورماتور جریان برای تبدیل جریان در شرایط غیرعادی شبکه برای حفاظت شبکه که به آن ترانسفورماتور جریان حفاظتی گفته شده و به رله های حفاظتی وصل می گردد . لذا دقت تبعیت جریان ثانویه از اولیه این ترانسفورماتورها در جریانهای زیاد ( هنگام بروز عیب ) دارای اهمیت بسیار می باشد .

ضمناً یکی از وظایف اساسی و مهم ترانسفورماتورهای جریان , ایزوله و جدا نمودن ولتاژ فشار قوی اولیه از دستگاه های قابل دسترسی طرف ثانویه ( دستگاه های اندازه گیری و رله های حفاظتی و ... ) است .

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


مقاله در مورد ترانسفورماتور
نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.