زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله بررسی وضعیت سنگ آهن در ایران و جهان

اختصاصی از زد فایل دانلود مقاله بررسی وضعیت سنگ آهن در ایران و جهان دانلود با لینک مستقیم و پر سرعت .

 

 

براساس آخرین آمارهای منتشر شده از سوی صندوق بین المللی پول و اعتبار، 98 درصد از سنگ آهن دنیا برای تولید آهن و فولاد بکار برده می شود، بطور میانگین برای تولید یک تن فولاد، حدود 1600 کیلوگرم سنگ آهن مورد نیاز می باشد. براساس برنامه توسعه اقتصادی و صنعتی کشور تا پایان سال 1388 تولید فولاد ایران می بایست به 28 میلیون تن افزایش یابد که سرمایه گذاری های جدید در بخش معدن می بایست پاسخگوی این میزان تولید فولاد در کشور باشد. مجموع ذخائر و منابع سنگ آهن در ایران حدود 4/4 میلیارد تن ذخیره تثبیت شده و 4/6 میلیارد تن ذخیره احتمالی است که در دهه های آینده وارد چرخه مصرفی صنایع فولاد کشور خواهد شد. ظرفیت تولید سنگ آهن در ایران هم اکنون (2007) از مرز 18 میلیون تن در سال گذشته است (IMIDRO) و این رقم در چند سال آینده با توجه به نیازهای بازارهای داخلی و جهانی در صورت عملی شدن ظرفیتهای در دست اجرا به 7/40 میلیون تن در سال خواهد رسید.
تولید جهانی سنگ آهن در سال 2006، 1482 میلیون تن و تولید فولاد خام 1239 میلیون تن بوده است که این مقدار افزایشی معادل 12 درصد برای تولید سنگ آهن و 8/8 درصد افزایش برای تولید فولاد نسبت به سال 2005 را نشان می دهد. تولید سنگ آهن و فولاد در اواخر دهه 90 میلیادی روند ثابتی داشته است اما از سال 2000 میلادی تا کنون پیوسته در حال افزایش بوده است.
با توجه به این که صنعت فولاد تنها مشتری اصلی سنگ آهن است هرگونه بررسی در مورد سنگ آهن می بایست با ارزیابی بازار فولاد همراه باشد.
قاره آسیا عمده ترین قطب تولید کننده فولاد جهان تلقی می شود در سال 2006 حدود 57 درصد فولاد جهان در این قاره تولید شده است. کشور چین با تولید بیش از 418 میلیون تن فولاد خام در سال 2006 معادل 8/33 درصد تولید جهانی فولاد را داشته است .
پیش بینی شده که در سال 2007 حدود 385 میلیون تن سنگ آهن به کشور چین وارد خواهد شد که 18 درصد نسبت به سال قبل رشد دارد و این رقم در سال 2008 حدود 440 میلیون تن، سال 2009 حدود 400 میلیون تن و در سال 2010 حدود 520 میلیون تن واردات سنگ آهن به کشور چین انجام خواهد شد. چین در سال 2007 می بایست حدود 2/52 درصد از نیاز خود به سنگ آهن را از طریق واردات تأمین کند که این رقم بالاتر از 3/51 درصد مربوط به سال 2006 بود است.
میزان ذخایر سنگ آهن دنیا از سال 1995 تا کنون پیوسته در حال افزایش بوده است و این بدلیل افزایش بازار مصرف و نیاز به شناسایی ذخایر جدید صورت گرفته است. میزان کل ذخایر زمین شناسی جهان حدود 400 میلیارد تن برآورد شده است که ایران با 5/4 میلیارد تن فقط 5/1 درصد از کل ذخایر جهان را به خود اختصاص داده است، لذا برنامه ریزی برای اکتشاف و شناسایی و اطمینان از وجود ذخیره قابل استخراج ضروری می باشد که این امر ناشی از نبود اکتشافات تفصیلی مطلوب می باشد از 5/4 میلیارد تن ذخایر کشف شده کشور، حدود 5/2 میلیارد تن ذخایر قطعی (کاتاگوری Bو C1) و حدود 9/1 میلیارد تن ذخایر احتمالی و ممکن (کاتاگوی C2 و C3) می باشند که نیاز به مطالعات اکتشافی بیشتر دارند. حدود 41 درصد ذخایر سنگ آهن ایران در منطقه ایران مرکزی، 35 درصد آهن در منطقه گل گهر، 21 درصد در منطقه سنگان قرار دارد و سایر آنومالیها فقط 2 درصد از ذخایر سنگ آهن را در بر می گیرند. جدول شماره 1 بیان کننده میزان تولید سنگ آهن در سال 2006 ، 2007 و ذخایر آن می باشد .
بررسی وضعیت تولید سنگ آهن در ایران ذخایر قابل استخراج سنگ آهن کشو ر دو میلیارد و 876 میلیون تن برآورد شده است. هم اکنون 53 معدن سنگ آهن در کشور وجود دارد. ولی چهار معدن گل گهر سیرجان، چادرملو، چغارت و سه چاهون بیشترین سهم در تولید سنگ آهن ایران را دارند. جداول 2 و 3 میزان تولید سنگ آهن دانه بندی و کنسانتره سنگ آهن را در وضعیت فعلی و پس از اجرای طرح های توسعه و افزایش ظرفیت مربوطه را نشان می دهد. براساس جدول شماره 4 میزان تولید واحدهای تولید کننده گندله در شرایط فعلی بالغ بر 10 میلیون تن است که با توجه به ظرفیت های در دست اجرا بر اساس برنامه های توسعه می بایست به 6/41 میلیون تن در سال برسد. که این رقم با توجه به چشم انداز تقاضای آتی فولاد در کشور و همچنین منظور نمدن رقمی معادل 15 درصد تولید داخلی برای صادرات تا پایان برنامه چهارم توسعه اقتصادی کشور (1388) به حدود 28 میلیون تن در سال خواهد رسید.
تولید صنعت فولاد کشور در سال 1385 رقمی بالغ بر 10 میلیون تن بوده که با توجه به برنامه چهارم توسعه اقتصادی کشور قرار است این میزان به 28 میلیون تن برسد. برای تحقق چنین رقمی طرحهای توسعه و افزایش ظرفیت فراوانی در حال اجرا هستند. نکته حائز اهمیت این است که عملی شدن برنامه های گفته شده در خصوص تولید فولاد جز با ایجاد و راه اندازی هر چه سریعتر طرح های توسعه و افزایش ظرفیت صنایع بالادستی فولاد در کشور میسر نخواهد شد.
با توجه به آمار ارائه شده در جدول شماره 4 میزان تولید گندله کشور در حال حاضر 10 میلیون تن بوده که می بایست تا پایان برنامه چهارم به 6/41 میلیون تن برسد. که بسیاری از طرح های توسعه و افزایش ظرفیت آنها (6/31 میلیون تن) در حال اجرا بوده و تعدادی از آنها مانند گندله سازی اردکان به بهره برداری رسیده است. برای رسیدن به رقم مصوب تولید گندله، ضروریست که ماده اولیه مورد نیاز آ« (کنسانتره و دانه بندی) مجموعاً بالغ بر 20 میلیون تن می باشد که تا پایان برنامه چهارم توسعه این میزان تولید می بایست به حدود 48 میلیون تن برسد.
لازم به توضیح است که معادل چادرملو ، گل گهر و چغارت که عمده ذخایر شناسایی شده و تولید سنگ آهن کشور هم اکنون از آنها ممکن یا امکان پذیر شده است می باشد مسیر طولانی را تا ریسدن به میزان تولید فعلی طی نموده اند. مثلاً معدن چادرملو در سال 1362 تجهیز و پس از گذشت 15 سال به ظرفیت فعلی دست یافته است. آنومالی شماره 1 معدن گل گهر نیز پس از گذشت بیش از 20 سال که از شناسایی آن سپری شده در سال 1373 به بهره برداری رسید واین در حالیست که هنوز آماده سازی بزرگترین آنومالی این معدن (آنومالی شماره 3) خاتمه نیافته است و استخراجی نیز صورت نگرفته است. چنین وضعیتی برای سنگ آهن چغارت نیز وجود دارد.
شده همگی حکایت از این امر دارند که می بایستی سرمایه گذاری و توجه بیشتری به حجم سرمایه و ایجاد ارزش افزوده در تولید سنگ آهن کشور نمود. با توجه به وجود ذخایر گازی فراوان و تولید 68 درصد از فولاد کشور به روش احیاء مستقیم و بومی شدن تکنولوژی این روش، که با به بهره برداری رسیدن طرحهای توسعه و افزایش ظرفیت این میزان به 80 درصد خواهد رسید. مسأله تأمین کنسانتره سنگ آهن و سرمایه گذاری در آن از اولویت خاصی برخوردار می باشد.
از طرف دیگر با نگاهی به ارزش ریالی فروش تولیدات شرکتهای معدنی سنگ آهن، (با فرض اینکه قیت FOB هر تن سنگ آهنکنسانتره را حدود 100 دلار در نظر بگیریم) ، به خوبی ضرورت سرمایه گذاری و راه اندازی طرح های معدنی با افزایش 149 درصد در ارزش فروش نمایان خواهد شد.
ناحیه معدنی بافق در یکی از کهن ترین پهنه های ایران زمین قرار دارد و در بر دارنده ذخایر سترگی از آهن، فسفر، سرب و روی است. این ناحیه ذخیرهای بیش از 2 میلیارد تن سنگ آهن (NISCO, 1980) را در بر دارد که در 34 آنومالی اصلی مغناطیسی و در ناحیه ای به وسعت 7500 کیلومتر مربع با روند شمالی- جنوبی در کمان آتشفشانی- پلوتونیک کامبرین آغازی موسوم به کاشمر- کرمان پراکنده است. (شکل 1). میزبان سیستم کانی زایی مگنتیت- آپاتیت سکانسی دگرسان شده شامل گدازه ها، سنگهای پیروکلاستیک و اپی کلاستیک، کربناتهای میان لایه ای و گرانیت های ساب ولکانیک متعلق به کامبرین آغازی است و در آنها گسترده ترین آلتراسیون ها عبارتند از نوع سدیک در عمق زیاد‏، اکتینولیتی و پتاسیک در ترازهای میانی و سرسیتی و سیلیسی در عمق های کم (تراب و لمان، 2007). در این کانسارها مگنتیت کانی اصلی است و آپاتیت کانی مزاحم به حساب می آید. آپاتیت به صورت توده ای در رگه ها و دایک ها و به صورت بلورهای خودشکل در اندازه های ریز و درشت که گاهی طول آنها به 15 تا 20 سانتی متر می رسد و در چند مرحله تشکیل شده است.
منشا کانسارهای آهن ناحیه بافق به مدت یکصد سال است مورد بحث می باشد و برای آن منشاهای مختلفی پیشنهاد شده است. برای مثال فورستر و جعفرزاده (1994) کانی زایی آهن این ناحیه را مرتبط به تفکیک یک مایع ناهمامیز اکسید آهنی غنی از فسفر از یک ماگمای ملانفلینیتی، سامانی (1988) آن را مرتبط با یک ماگمای کربناتیتی و تراب و لمان (2007) آن را مرتبط با ماگماتیسم گرانیتی معرفی کرده اند. جمی (2005) و تراب و لمان (2007) منشا این کانسارها را هیدروترمال و سیال های مربوطه را به طور عمده حاصل از سنگهای تبخیری کامبرین آغازی و در درجه دوم از ماگمای گرانیتی دانسته اند. مر و مدبری (2003) نقش هر دو فرایند مذاب ناهمامیز اکسید آهنی و متاسوماتیسم قلیائی را مورد توجه قرار داده اند. با توجه به اهمیت اقتصادی و زمین شناسی و مبهم بودن منشا کانسارهای آهن ناحیه بافق در این مقاله سعی شده است تا با توجه به خطواره ها مغناطیسی، سن سنجی های اخیر و ژئوشیمی آپاتیت‏، نوع ماگماتیسم مرتبط با این کانسارها را بهتر مشخص کرد.
خطواره های مغناطیسی و ارتباط زمین شناختی آنها:
بر اساس نقشه مغناطیس سنجی ناحیه دو خطواره عمده با روند NNW-SSE در دو طرف گسل فرضی پشت بادام قابل تشخیص است که در شکل 2 بازسازی شده اند. خطواره مغناطیسی شرقی به طور مشخصی با گرانیت های ناریگان، زریگان و دوزخ دره منطبق است یا با آنها همپوشانی دارد. این ارتباط به نظر ما از لحاظ ژنز این کانسارها کلیدی است و اهمیت آن را در بخشهای دیگر مقاله خواهیم دید.
خطواره دوم در غرب گسل فرضی پشت بادام قرار دارد و قسمت بزرگی از آن در شمال با نهشته های رسوبی نئوژن و کواترنری پوشیده شده است. بخش جنوبی این خطواره، کانسارهای چغارت و آنومالی شمالی را در برمی گیرد که در آنها توده های کوچکتری از گرانیتهای نوع زریگان و ناریگان در سطح زمین و یا در حفاری ها دیده می شود. شکل 2 نشان می دهد که خطواره های مغناطیسی مورد بحث به موازات کمربند گرانیتی کامبرین آغازی و در دو طرف آن قرار دارند. خطواره های مغناطیسی مورد بحث در ناحیه ساغند چرخش مشخصی به طرف شرق نشان می دهند. با این چرخش، خطواره مغناطیسی مورد بحث به شکل کمانی در می آید که تقعر آن به سمت شرق است. شایان ذکر است که این خطواره مغناطیسی کمانی با کمان آتشفشانی- پلوتونیک کامبرین آغازی کاشمر- کرمان که توسط رمضانی و تاکر (2003) معرفی شده به خوبی منطبق است.
سن یابی آپاتیت، مونازیت و زیرکن به روش های ایزوتوپی U-Pb و غیر ایزوتوپی Th-U/Pb :
سن تبلور آپاتیت همرشد با کانه آهن در کانسار آهن چغارت با روش U-Pb اندازه گیری شده و516±6 میلیون سال تعیین گردیده است(قادری و رمضانی 1381).جالب است که تراب و لمان (2007) نیز سنی مشابه (515±21 Ma) را به روش غیر ایزوتوپی Th-U/Pb برای تبلور مونازیت در کانسنگ آهن-آپاتیت به دست آورده اند.از طرف دیگر، رمضانی و تاکر (2003) با استفاده از روش U-Pb بر روی زیرکن سن جایگزینی لوکوگرانیت های زریگان و دوزخ دره را به ترتیب 525±7 و 526±1 میلیون سال به دست آورده اند. هم پوشانی قابل توجه سن تشکیل آپاتیت و مونازیت کانسنگ های آهن با سن جایگزینی توده گرانیتی منطقه– با منظور کردن دامنه خطاهای مربوطه – نشانه محکمی برای ارتباط کانی زایی آهن- آپاتیت با ماگماتیسم گرانیتی کامبرین آغازی است.
ژئوشیمی آپاتیت ها و ایزوتوپ های پایدار:
آپاتیت به صورت کانی فرعی در اغلب سنگهای آذرین وجود دارد. تغیرات در غلظت عناصر فرعی و نادر خاکی در آپاتیت رابطه نزدیکی با درجه تفریق ماگما دارد. بلوسووا و همکاران (2002)نشان داده اند که آپاتیت های سنگهای مختلف دارای شاخص های متمایزی از لحاظ فراوانی نسبی عناصر فرعی مانند Sr,Y,Mn ,Th و عناصر نادر خاکی (REE ها) هستند و به طور کلی پس از نرمالیزه شدن نسبت به کندریت الگوهای متمایزی به دست می دهند.
برای نشان دادن این که آپاتیت های کانسنگ های آهن ناحیه بافق با کدامیک از گروههای آپاتیت معرفی شده توسط بلوسووا و همکاران (2002) شباهت دارد داده های موجود درباره عناصر مذکور در آپاتیتهای منطقه بافق بر روی نمودارهای Sr در مقابل Y و Mn ، (Ce/Yb)cn در مقابل REE کل، Y در مقابل Eu/Eu* و الگوی پراکندگی عناصر نادر خاکی رسم شده است (شکل 3) و تفسیر آنها به شرح زیر است.
نمودار تغیرات Sr در مقابل Y و Mn :
مقدار Sr و Y آپاتیت ها خیلی متغیر است و تطابق منفی قوی میان غلظت های این دو عنصر دیده می شود چون که مقدار Sr با درجه تفریق ماگما از سنگهای کربناتیتی و الترامافیکی به سمت سنگهای گرانیتوئیدی شدیدا تفریقیافته و پگماتیتها کاهش می یابد در حالیکه مقدارY افزایش می یابد (شکل 3a). غنی شدگی نسبی Y، HREE و Mn همراه با تهی شدگی نسبی Sr در آپاتیتها ارتباط نزدیکی با تفریق سنگ میزبان دارد. بنابراین مقدار Mn و یا Y از حدود 100 پی پی ام در آپاتیتهای سنگهای کربناتیتی و لرزولیت های مشتق شده از گوشته تا حدود 1% در آپاتیتهای گرانیتوئیدهای شدیدا تفریق یافته و پگماتیتها افزایش می یابد. کاهش مقدار Sr به سمت سنگهای اسیدی تر (شکل3a) احتمالا به دلیل شرکت پذیری Sr در پلاژیوکلاز است. در حالیکه عناصر Y و HREE ها عناصر ناسازگار هستند. این نمودار تمایز دقیقی از آپاتیتها برای انواع سنگهای مختلف نشان می دهد که نمونه های آپاتیت مربوط به منطقه بافق در محدوده مشترک بین سنگهای مافیک و گرانیتوئیدها قرار گرفته است.
نمودار Sr در مقابل Mn (شکل 3c) تطابق ضعیف تری نسبت به Sr در مقابل Y نشان می دهد که احتمالا بدلیل این است که مقدار Mn تنها بستگی به درجه تفریق سنگ میزبان ندارد بلکه به حالت اکسیداسیون آن نیز وابسته است. با این حال این نمودار تمایزآشکاری بین آپاتیتهای سنگهای مافیک با سنگهای گرانیتوئیدی و کانسنگ های آهن نشان می دهد که نمونه های منطقه بافق در محدوده کانسنگ های آهن و سنگهای گرانیتوئیدی قرار گرفته است.
نمودار تغیرات (Ce/Yb)cn در مقابل REE کل:
این نمودار نسبت Ce/Yb نرمالیزه شده به کندریت در برابر REE کل آپاتیت سنگهای مختلف را نشان می دهد که مقدار (Ce/Yb)cn با افزایش تفریق از سنگهای کربناتیتی و الترامافیک های مشتق شده از گوشته به سمت سنگهای گرانیتوئیدی و پگماتیتها کاهش می یابد و ارتباطی با REE کل ندارد. عناصر نادر خاکی سبک (LREE) به طور کلی تمرکز بیشتری در سنگهای کمتر تفریق یافته نشان می دهند. این ممکن است به دلیل این باشد که کانی های فرعی همزیست مانند مونازیت LREE ها را از مذاب در حین تفریق خارج می کند و منجر به تهی شدگی این گروه در آپاتیتهای سنگهای تفریق یافته تر می شوند. آپاتیتهای کانسنگ های آهن منطقه بافق در این نمودار در محدوده آپاتیتهای سنگهای گرانیتوئیدی قرار گرفته اند (شکل3b).
الگوی پراکندگی REE در آپاتیتها:
الگوی پراکندگی REE آپاتیتهای نرمالیزه شده نسبت به کندریت به طور تیپیک شیب منفی دارند که نشان دهنده غنی شدگی آشکار از LREE ها است. علاوه بر این شیب نمودارها از سنگهای شدیدا تفریق یافته تا سنگهای مافیک کمتر تفریق یافته افزایش می یابد. بنابراین نسبت (Ce/Yb)cn برای آپاتیتهای سنگهای کربناتیتی و لرزولیت های مشتق شده از گوشته خیلی بالا (به ترتیب بیش از 100 و بیش از 200) است (شکل3e). در مقابلنسبت (Ce/Yb)cn آپاتیتهای سنگهای گرانیتوئیدی بیشتر از 20-15 و آپاتیتهای پگماتیت های گرانیتی کمتر از 1 است که نشان دهنده غنی شدگی HREE ها و تهی شدگی LREE ها با افزایش تفریق است (شکل3e). نسبت (Ce/Yb)cn کانسارهای آهن ناحیه بافق 23-17 است و الگوی REE آپاتیتهای این کانسارها مشابه آپاتیتهای موجود در سنگهای گرانیتی و بازیک است (شکل3e). آنومالی منفی Eu در الگوی پراکندگی REEبه طور کلی با تفریق افزایش می یابد (شکل3e) که در آپاتیتهای سنگهای کربناتیتی و لرزولیت های مشتق شده از گوشته کمتر است و در آپاتیتهای سنگهای گرانیتی تفریق یافته بیشتر است. آنومالی منفی موجود در کانسگ های آهن ناحیه بافق مشابه سنگهای گرانیتی است
ایزوتوپ های گوگرد:
در این مطالعه تعداد ٧ نمونه از پیریت های همراه با کانسنگ آهن از کانسارهای مختلف ناحیه بافق در آزمایشگاه ACME کانادا مورد آنالیز ایزوتوپی گوگرد قرار گرفته و نتایج در شکل 4a ارائه شده است. گوگرد این نمونه ها از لحاظ ایزوتوپی به طور قابل ملاحظه ای با گوگرد مشتق شده از گوشته زمین (δ34S=0) فاصله دارد و با گوگرد سنگهای تبخیری و آب دریا شباهت نشان می دهد.
ایزوتوپ های اکسیژن:
جمی (2005) داده های ایزوتوپی اکسیژن برای نمونه های مختلف کانسنگ آهن ناحیه بافق گزارش کرده اند. از لحاظ مقادیر δ18O مگنتیت های آنالیز شده با آب دریا (SMOW) شباهت دارد و با آب ماگمایی گوشته زاد (δ18O=+6_+8) فاصله زیادی نشان می دهد. بر اساس مر و مدبری (2003) مگنتیت چغارت از لحاظ ترکیب ایزوتوپی اکسیژن به سیال هیدروترمال ماگمایی شبیه است.

 

 

 

 

 

نگاهی به معادن سنگ آهن مرکزی ایران - بافق
شهرستان بافق در ‪ ۱۲۰‬کیلومتری جنوب شرقی شهر یزد دارای منابع زیر زمینی متنوعی است و از جمله مناطق معدن خیز کشور به شمار می‌رود.

سنگ آهن چغارت ، چاه گز و سه چاهون ، منگنز ناریگان ، فسفات اسفوردی ، سرب و روی کوشک و معدن مرمریت بیشه در ، از مهمترین معادن بافق هستند.
شرکت سهامی خاص معادن سنگ آهن مرکزی ایران در ‪ ۱۰‬کیلومتری شمال شرقی شهر بافق و در حاشیه مرکزی ایران قرار دارد.
این شرکت در سال ‪ ۱۳۵۰‬برای اکتشاف و بهره‌برداری از کانسارهای آهن منطقه بافق توسط سازمان ذوب آهن ایران سابق تاسیس شد و هم اکنون یکی از واحدهای مهم زیر مجموعه شرکت تهیه و تولید مواد معدنی ایران و بزرگترین‌شرکت تولید کننده سنگ آهن دانه‌بندی و کنستانتره کشور است.
بلوک معدنی بافق با ذخیره بیش از یک سوم سنگ آهن کشور بعنوان مهمترین زون آهن دار ایران شناخته شده‌است.
به دنبال عملیات اکتشافی انجام شده ، از سال ‪ ۱۳۴۰‬تاکنون در این منطقه بیش از ‪ ۳۸‬آنومالی آهن دار با ذخیره نزدیک به ‪ ۱/۷‬میلیارد تن شناسایی شده که مهمترین آنها معادن چغارت ، سه چاهون، آنومالی شمالی، میشدوان و چاه‌گز هستند.
شرکت سنگ آهن مرکزی ایران ، بزرگترین تولیدکننده سنگ آهن دانه بندی کشور طی ‪ ۳۰‬سال گذشته است که از سال ‪ ۱۳۵۰‬عملیات استخراج سنگ آهن در معدن چغارت را آغاز کرد.
این معدن طی این مدت، سنگ آهن مورد نیاز کارخانه ذوب آهن اصفهان و برخی صنایع فولادسازی کشور را تامین کرده و از سال ‪ ۸۰‬تاکنون به جمع صادر کنندگان سنگ آهن پیوسته است.
هم‌اکنون از دو معدن "چغارت" و "سه چاهون" سالانه هشت میلیون تن سنگ آهن استخراج می‌شود که نیمی از آن سنگ آهن دانه‌بندی شده‌است و بطور مستقیم برای مصرف در کارخانه ذوب آهن اصفهان و صادرات استفاده می‌شود و مابقی نیز در کارخانه فرآوری چغارت به کنسانتره سنگ آهن تبدیل می‌شود.

 

معدن سنگ آهن چغارت بافق
معرفی:
شرکت سهامی خاص معادن سنگ آهن مرکزی ایران که بزرگترین تولید کننده سنگ آهن دانه بندی کشور می باشد ،از سال 1350 عملیات تولید سنگ آهن را در معدن چغارت آغاز و تاکنون سنگ آهن مورد نیاز کارخانه ذوب آهن اصفهان و دیگر صنایع فولاد کشور را تامین و از سال 1381 به جمع صادر کنندگان سنگ آهن پیوسته است.
در حال حاضر این شرکت از دو معدن چغارت و سه چاهون سالیانه نزدیک به 10 میلیون تن سنگ آهن استخراج می نماید که از این مقدار حدود 4 میلیون تن دانه بندی و ما بقی آن جهت تبدیل به کنسانتره به کارخانه فرآوری چغارت ارسال می گردد.
موقعیت معدن چغارت به همراه راههای ارتباطی
این معدن در جنوب شرقی شهرستان یزد و در 75 کیلومتری جنوب غربی شهر بهاباد و در حاشیه کویر مرکزی ایران واقع است. دارای آب و هوای بسیار گرم و رطوبت خیلی کم می باشد به طوری که درجه حرارت بین 47درجه و 7-درجه متغییر است. میزان بارندگی کم و بطور متوسط در سال 7/55میلیمتر است. یک سلسله فعالیتهای زمین شناسی مربوط به زمان «اینفراکامبرین» باعث بوجود آمدن حوضه آتشفشانی منطقه بافق گشته که ازنظر ذخایر معدنی حایز اهمیت می باشد. محدده آهن دار زرند و ساغند و رباط پشت بادام که بنام بلوک بافق نامگذاری گردیده در این حوضه قرار دارند. کانسار های با ارزشی از قبیل سنگ آهن منگنز دار و آپاتیت و سرب و روی در محدوده این بلوک تجمع یافته اند. شرکت ملی ذوب آهن و بدنبال آن شرکت سنگ آهن مرکزی ایران-بافق از سال1340تا کنون فعالیتهای گسترده ای را زمینه اکتشاف سنگ آهن مورد نیاز کارخانجات فولاد کشور و همچنین شناسایی آبهای زیر زمینی به عمل آورده که در مجموع با تهیه حدود 200000هکتار نقشه ژئو فیزیکی و زمین شناسی بالغ بر 7/1میلیارد تن میسر گردید که از جمله می توان به کانسار های«چغارت،چادر ملو،چاه گز،سه چاهون»اشاره نمود.
این معدن از سال ۱۳۵۰ تامین کننده خوراک کارخانه ذوب آهن اصفهان بوده است نوع سنگ آهن مصرفی عبارت است از سنگ آهن پر عیار و کم فسفر و دانه بندی شده در کارخانه موجود می باشد.
از معدن سنگ آهن چغارت علاوه بر سنگ آهن پر عیار و کم فسفر یک نوع سنگ آهن کم عیار و پر فسفرنیز استخراج می شئد که قابل استفاده بری کوره بلند و صنایع فولاد سازی کشور نمی باشد میزان استخراج این نوع سنگ آهن که در محوته سنگ آهن چغارت ذخیره شده است حدود ۵/۱۹ میلیون تن می باشد که می بایستی آن را به طریقی قابل استفاده در صنایع فولاد سازی نمود. از طرفی ذخیره قابل استفاده سنگ آهن کم عیار سه چاهون در دو توده شمالی و جنوبی به ترتیب بر
ابر ۴۵ و.۴/۴۹ میلیون تن بر آورد شده است لذا با توجه به ذخایر سنگ آهن کم عیار پر فسفر چغارت و کم عیار سه چاهون بری استفاده بهینه از ذخایر مورد بحث طرح توسعه مجتمع معدنی سنگ آهن چغارت با اهداف زیر از سال ۱۳۷۰ به مئرد اجرا گذاشته شد و تاریخ خاتمه طرح در سال ۱۳۸۳ طبق آخرین تجدید نظر برنامه زمانی خواهد بود.
۱-ادامه تامین ۳ میلیو تن سنگ آهن پر عیار دانه بندی شده بری خوراک کوره بلند اصفهان.
۲-تولید۲/۳میلیو تن کنسانتره آهن به منظور تولیدسینتر و پلت جهت تامین مواد اولیه مورد نیاز طرح هی توسعه کوره بلند اصفهان و سایر صنایع فولاد کشور.
کارخانه کنستانتره سنگ آهن چغارت و سه چاهون داری ۲ خط تولید مستقل بری سنگ آهن پر فسفر کم عیار چغارت و سنگ آهن کم عیار سه چاهون می باشد.مقدار خوراک ورودی کارخانه فرآوری بری ۲ خط تولید مورد بحث جمعا ۷/۵ میلیون تن در سال بوده و هر یک از خطوط تولید کنسانتره به ظرفیت ۶/۱ میلیون تن در سال وجمعا ۲/۳ میلیون تن کنستانتره در سال خواهد بود.
وزن کل تجهیزات و ماشین آلات جمعا حدود ۶۷۷/۱۱ تن بر آورد گردید گه شامل ۲۹۰ تن وزن دو دسگاه سنگ شکن هی چغارت و سه چاهو و ۸۵۳۷ تن وزن ماشین آلات و تجهیزات قرارداد اصلی و ۲۸۵۰ تن مربوط به الحاقیه قرارداد می باشد.
◄ پروسس خط تولیدسنگ آهن چغارت:
سنگ آهن کم عیار پر فسفر از ذخایر موجود توسط یک دستگاه سنگ شکن که در سایت چغارت نصب شده است خرد شده و توسط نوار نقاله به بستر همگن ساز چغارت انتقال می یابد حداکثر ابعاد سنگهی خرد شده حدود ۳۰ سانتی متر می باشد و عمل ذخیره نمودن توسط یک دستگاه استاکر انجام می شود .
سنگهی ذخیره شده در بستر همگن ساز توسط یک دستگاه ریکلایمر و نوار نقاله به سیلوی ذخیره خط تولید چغارت با ظرفیت ۲۰۰۰ تن انتقال خواهد یافت.
سنگ آهن ذخیره شده در سیلوی ۲۰۰۰ تنی از قسمت زیر توسط یک دستگاه نوار نقاله به یک دستگاه آسیاب خود شکن انتقال می یابد و عمل خردایش با اضافه نمودن آب انجام می گیرد . ظرفیت آسیاب شامل ۳۶۶ تن سنگ آهن از سیلوی مربوطه در ساعت و ۱۱۰ تن در ساعت سنگ هی دانه درشت برگشتی از سرند لرزان که جمعا برابر ۴۷۶ تن در ساعت می باشد.
دوغاب حاصل از عمل خردایش پس از خارج شدن از آسیاب و عبور از یک دستگاه سرند لرزان توسط پمپهی دوغاب به جداکنندگان مغناطیسی مرحله اول جهت جداسازی انتقال یافته و سنگهی دانه درشت روی سرند لرزان جهت خردایش به وسیله نوار نقاله به آسیاب بر می گردد.
در مرحله اول جداسازی ذرات سنگ آهن از سایر مواد توسط جداکنندگان مغناطیسی انجام گرفته و باطله مربوط بری جداسازی مرحله دوم توسط پمپ به هیدرو سیکلون ها منتقل می شود.
در مرحله دوم بازیافت باقیمانده ذرات سنگ آهن توسط جداکنندگان مغناطیسی این مرحله جدا شده و باطله مربوط به تیکنر باطله منتقل می گردد.
دوغاب شامل کنسانتره آهن در دو مرحله جداسازی به قسمت فیلتراسیون منتقل شده و توسط فیلتر هی نواری با استفاده از پمپ هی خلا آبگیری می شود و سپس این کنسانتره با ۶۶٪ آهن و ۹٪آب توسط نوار نقاله به استوک یارد مربوط منتقل و ذخیره می شود.
چون نوع پروسس سیستم تر است لذا بری بازار یابی آب مصرف شده کلیه باطله ها و آب زیر فیلتر هی نواری به دستگاه تیکنر باطله منتقل می شود و با استفاده از محلول شیمیایی فلوکولانت که باعث سرعت در عمل ته نشینی می شود جداسازی آب از باطله انجام گرفته و آب بازیافتی به مخزن آب پروسس منتقل وتوسط پمپهی مربوطه به محل هی مصرف در خط تولید انتقال می یابد.
باطله خط تولید چغارت از محل زیر تیکنر باطله توسط پمپهی دوغاب به محل انباشت که دورتر از محل کارخانه است پمپاژ می شود .
میزان تولید کنسانتره خط تولید چغارت برابر ۲۳۸ تن در ساعت می باشد که توسط یک دستگاه استاکر نصب شده در استوک یارد مربوط انباشت می شود و بری برداشت آن از یک دستگاه ریکلیمر و نوار نقاله مربوطه و انتقال آن به یستگاه بارگیری راه آهن استفاده می شود.
◄ پروسس خط تولید سنگ آهن سه چاهون :
سنگ آهن کم عیار سه چاهون پس از استخراج از معدن توسط یک دستکاه سنگ شکن که در سایت سه چاهون نصب شده است عمل خردایش اولیه انجام گرفته و به وسیله نوار نقاله به قسمت استوک پایل منتقل می گردد.
سنگ آهن انباشته شده در استوک پایل توسطنوار نقاله و تجهیزات بارگیری در ایستگاه بارگیری سنگ آهن سه چاهون با واگن هایی با ظرفیت ۴۵ تا ۵۰ تن منتقل وبه محل ایستگاه تخلیه سنگ آهن سه چاهون در سایت چغارت حمل می شود.
سنگ آهن تخلیه شده در ایستگاه تخلیه سنگ آهن سه چاهون به وسیله نوار نقاله مربوطه به محل بستر همگن ساز منتقل و توسط استاکر خط سه چاهون عمل انباشت انجام می گردد.
از محل بستر همگن ساز خط تولید سه چاهون توسط یک دستگاه ریکلیمر و نوار نقاله سنگ آهن سه چاهون به سیلوی ذخیره ۲۰۰۰ تنی مربوطه منتقل و از زیر سیلوی مورد نظر به وسیله نوار نقاله به مقدار ۶۲۸ تن در ساعت خوراک آسیاب خود شکن خط تولید سه چاهون تامین می گردد.
عمل خردیش در آسیاب خود شکن در سه چاهون همانند خط تولید چغارت بوده و دوغاب زیر سرند لرزان جهت عمل جداسازی به وسیله پمپ هی دوغاب به جداکنندگان مغناطیسی مرحله اول منتقل و سنگ هی دانه درشت روی سرند لرزان مجددا به آسیاب بر می گردد.
به علت تفاوتی که بین مشخصات سنگ آهن سه چاهون و چغارت وجود دارد پروسس خط تولید چغارت از نظر به کارگیری ماشین آلات فرق دارد و بری ین خط تولید یک دستگاه آسیاب گلوله ی نیز دز نظر گرفته شده است.
در خط تولید کنسانتره سه چاهون همانند خط تولید چغارت مراحل جداسازی سنگ آهن به وسیله جدا کنندگان مغناطیسی در دو مرحله انجام می گیرد و کنسانتره مربوط به قسمت فیلتراسیون منتقل می شود.
ظرفیت تولید کنسانتره خط سه چاهون برابر ۲۴۵ تن کنیتانتره در ساعت با ۶۶٪ آهن ۹٪رطوبت می باشد.
بقیه عملیات انتقال کنسانتره بری انباشت و برداشت از استوک یارد مربوطه مشابه خط تولید چغارت می باشد.
نحوه بهره برداری از معدن به روش روباز و پلکانی انجام می گیرد و مراحل خط تولید معدن به شرح زیر است:
حفاری و انفجار در سنگ آهن
بارگیری و حمل از معدن به سنگ شکن
خرد کردن و طبقه بندی سنگ آهن به اندازه ای که قابل مصرف در کوره بلند باشد.
بارگیری سنگ آهن و ارسال به محل مصرف
محصولات
LUMP : سنگ آهن دانه درشت 6تا 30 میلیمتر با عیار حدودا 62%
FINE :سنگ آهن دانه ریز 0 تا 6 میلیمتر با عیار حدودا 60%
کنستانتره آهن با عیار حدودا 66%
خط مشی سیستم مدیریت یکپارچه ( IMS )
شرکت سهامی خاص معادن سنگ آهن مرکزی ایران بعنوان یکی از تولید کنندگان سنگ آهن در ایران اصول سیستم مدیریت یکپارچه را بر مبنای سیستم های مدیریت کیفیت , ایمنی و بهداشت شغلی و زیست محیطی مطابق استانداردهای بین المللی OHSAS 18001:1999 ,ISO 14001:2004 ,ISO9001:2000 پیاده نموده است . این شرکت اجرای سیستم مدیریت یکپارچه را زیر ساختی مناسب جهت تعالی سازمان به منظور شناسایی و درک نیازها و خواسته های قانونی مشتریان و سایر الزامات سیستم مدیریت یکپارچه دانسته و برای تحقق آنها راهکارهای زیر را مد نظر قرار میدهد :
- حفظ و توسعه بازارهای داخلی و ایجاد ارزش افزوده بیشتر برای سازمان
- تلاش در جهت رعایت حقوق ذینفعان و رضایتمندی مشتریان
- حفظ و توسعه و بها دادن به سرمایه های انسانی با ایجاد انگیزه بر اساس شایسته سالاری
- انتخاب تامین کنندگان مناسب و نظارت مستمر بر خدمات و محصولات آنها با رعایت منافع طرفین
- سنجش و ارزیابی عملکرد فرایندها به منظور حرکت در مسیر بهبود مستمر
- استفاده بهینه از منابع متناسب با اهداف سازمان با توجه به الزامات و محدودیت های قانونی
- بکارگیری فن آوری اطلاعات و ارتباطات جهت پردازش داده ها و اطلاع رسانی
- کنترل عوامل سخت و زیان آور و مخاطرات محیط کار و ارتقاء بهداشت شغلی
- تعهد به کنترل و پیشگیری از آلودگی های زیست محیطی
مسئولیت حسن اجرای سیستم مدیریت یکپارچه و حفظ و بازنگری آن به عهده مدیریت ارشد و نظارت مستمر بر ارزیابی اثربخش و ارائه گزارش از چگونگی عملکرد سیستم به عهده نماینده مدیریت می باشد . تمامی کارکنان موثر بر حوزه فعالیت این سیستم ضمن آموزشهای مستمر ملزم به همکاری و اجرای دقیق الزامات تدوین شده در خط مشی , نظامنامه و روشهای اجرایی می باشند . این خط مشی با نگرش صحیح به منابع انسانی و ایجاد انگیزش در جهت مشارکت عمومی کارکنان تحقق خواهد یافت .
وانادیوم در کانسار سنگ آهن چغارت
یکى از عمده ترین منابع وانادیوم ، سنگ آهنهاى تیتانیوم و وانادیوم دار بوده و از اواسط دهة 1950 تولید وانادیوم بطور گسترده با بهره بردارى و فرآورى تیتانومنیتیت ها افزایش یافته است و بطور کلى تیتانومنیتیت ها یا بطور مستقیم براى تولید وانادیوم بکار مى روند و یا پس از تولید چدن وانادیوم دار و در ادامة آن تولید فولاد از چدن ، سرباره هایى حاصل مى شود که غنى از وانادیوم بوده و براى استحصال وانادیوم بکار مى روند . ذخایر عظیمى از تیتانومنیتیت ها در ایران مرکزى وجود دارند که محتوى عناصر با ارزش و مفیدى بوده و از دیدگاه فرآورى داراى اهمیت خاص مى باشند که از آن جمله مى توان به کانسازهاى اصلى ناحیة بافق – ساغند ( شامل چغارت ، چادرملو ، آنومالى شمالى ، چاه گز و سه چاهون) اشاره کرد که حضور وانادیوم در آنها چشمگیر است . در این کانسارها وانادیوم همراهى و مشارکت بسیار خوبى را با کانه هاى منیتیتى نشان مى دهد و میزان این عنصر در این نوع کانه در مقایسه با انواع دیگر بسیار بیشتر است . عیار وانادیوم در کانسنگهاى این ناحیه و بالاخص چغارت با میزان عیار آهن (Fe ) ،FeO و نیز تیتانیوم نسبت مستقیم و با میزان فسفر نسبت معکوس دارد و به عبارتى مى توان گفت سنگ آهنهاى پر عیار و کم فسقر داراى مقدار بیشترى وانادیوم در شبکة خود مى باشند و همچنین وانادیوم احتمالاً در کانى منیتیت تمرکز پیدا کرده است . عیار پنتوکسید وانادیوم (V2O5 ) در کانسار چاه گز حدود 4/0 درصد و در معدن چغارت بین 1/0 درصد در سنگهاى آهن کم عیار و پر فسفر تا 5/0 درصد در سنگهاى آهن پر عیار و کم فسفر متغیر است و با توجه به اینکه عیار آن در این کانسارها از عیار حد اقتصادى این عنصر در بازارهاى جهانى بیشتر است لذا بنظر مى رسد که استحصال وانادیوم از کانسنگهاى این ناحیه و بخصوص چغارت اقتصادى باشد.
این معدن با ذخیره زمین شناسی 207 میلیون تن در 12 کیلومتری شمال شرقی شهر بافق واقع شد و ارتفاع اولیه آن از سطح دریا 1286 متر می باشد.
ذخیره قابل استخراج این معدن 2/177 میلیون تن برآورد شده که از این میزان 6/95 میلیون تن آن به دلیل عیار بالای آهن و فسفر پایین، پس از خردایش به صورت مستقیم قابل مصرف در کارخانجات فولاد می باشد و مابقی باید جهت پرعیارسازی به کارخانه فرآوری ارسال گردد.
عملیات بهره برداری از این معدن از شهریور 1350 آغاز شده و تا پایان سال 1384 حدود 97 میلیون تن سنگ آهن از این معدن استخراج شده است.
عملیات استخراج در این معدن به روش روباز و با استفاده از شاول های الکتریکی با حجم جام 7 متر مکعب و کامیون هایی با ظرفیت 32 و 65 تنی صورت می گیرد.

کارخانه خردایش و دانه بندی:
کارخانه خردایش و دانه بندی معدن چغارت بر اساس برنامه تولید سالیانه 3 میلیون تن سنگ آهن طراحی و ساخته شده است . قسمتهای اصلی این کارخانه شامل ساختمانهای سنگ شکن مخروطی و مجموعه سرندها می باشد .
سنگ آهن پر عیار و کم فسفر ارسالی از معدن ، طی سه مرحله بوسیله سنگ شکن های فکی ، مخروطی اولیه و مخروطی ثانویه خرد و سپس توسط سرندها به دو فراکسیون دانه ریز و دانه درشت با شرایط فنی مورد نظر ، دانه بندی و در انبارهای خاص ، ذخیره و آماده ارسال به کارخانه های فولاد می گردد.
نظر به اینکه 6/95 میلیون تن از ذخیره سنگ آهن قابل استخراج معدن چغارت به دلیل عیار بالای آهن و پایین بودن میزان فسفر به صورت مستقیم، قابلیت استفاده در کارخانجات فولادسازی را دارد، بدین منظور این تیپ سنگ آهن طی سه مرحله توسط سنگ شکن های فکی و مخروطی با ابعاد کوچکتر از 25 میلیمتر خردایش و سپس به دو بخش دانه ریز (صفر تا 10 میلیمتر) و دانه درشت (10 تا 25 میلیمتر) تبدیل و در انبارهایی با ظرفیت 35 هزار تن انباشت و در نهایت توسط راه آهن به کارخانجات ذوب آهن اصفهان یا بنادر کشور جهت صادرات ارسال می گردد.

 



کارخانه تولید کنسانتره
به منظور پرعیارسازی کانسنگ های کم عیار چغارت و سه چاهون، کارخانه ای با ظرفیت تولید سالیانه 2/3 میلیون تن کنسانتره احداث شده که در سال 1384 به بهره برداری رسید.
این کارخانه شامل دو خط تولید مستقل برای سنگ آهن کم عیار و پرفسفر چغارت و سنگ آهن کم عیار سه چاهون می باشد.
مقدار خوراک ورودی کارخانه برای هر دو خط تولید جمعا7/5 میلیون تن در سال بوده و ظرفیت تولید هر یک از خطوط، 6/1 میلیون تن کنسانتره در سال می باشد.

در این کارخانه، سنگ آهن پر فسفر و کم عیار پس از خردایش در آسیاهای خودشکن و گلوله ای، توسط دستگاه های جدایش مغناطیسی شدت پایین و بالا، پرعیار و آماده ارسال به واحدهای فولادسازی می گردد.
سیستم تولید در این کارخانه مکانیزه بوده و کلیه مراحل تولید توسط واحدهای اتوماسیون، کیفیت و آزمایشگاه، کنترل و نظارت می گردد.
نظریه های متفاوت در مورد کانسارهای آهن یا لئوزیک زیرین:
یکی از کانسارهای آهن پالئوزوئیک زیرین کانسار آهن در ناحیه بافق می باشد. کانسارهای آهن ماگمایی موجود در منطقه بافق را مرتبط با مگاسیسم قلیایی که در محیطی کافتی جایگزین شده اند می دانند. ماگماتیسم مربوط به این کانسارها را از نوع قلیایی یا قلیایی آهکی می دانند که در محیط زیرین ساختی کمان های جزیره ای یا حوضه های میان این جزایر و دنباله شمال آن ، ایران،‌ از بهم پیوستن کمانهای جزیره ای بوجود آمده اند.
کانسازهای ماگایئی آهن پر منگنز که کم فسفر و فقیر از عناصر خاکی نادر می باشد نظیر ناریگان مشیدوان در ایران مرکزی از جمله کانسارهای مربوط به این فاز کانی زایی می باشد
در منطقه بافق کانسار موازی آهن بصورت گدازه های مگنتیتی و ژاسپیلست مشاهده شده است. سنی که برای توده های نفوذی در منطقه بافق تعیین شده است از 500 تا 800 میلیون سال متغیر است.
معدن چغارت هم اکنون در حال بهره برداری است و سنگ آهن آن به کارخانه ذوب آهن اصفهان ارسال می گردد کانسار آهن چغارت از نوع فسفر دار است.مگنتیت کانی اصلی ذخیره را تشکیل می دهد. آپاتیت به صورت پراکنده به حالت دایک گزارش شده است. کانسار چغارت منشأ ماگمایی دارد و به احتمال ، در ریفت داخل قاره ای تشکیل گردیده است. میزان ذخیره قطعی 216 میلیون تن، عیار متوسط آهن 41/57 درصد، فسفر 4% و گوگرد 08/0 درصد است
آبهای زیر زمینی که در رابطه با کارهای انفجاری و بارگیری مشکل ایجاد کرده قسمتهای قهوه ای سنگ آهن اصلی و سنگهای زرد از نوع آهکی و سیلیسی که به عنوان باطله برداشت می شود. جاده ها با شیب 08/0 درصد و عرض ایمنی 20 متر ایجاد شده.
وسعت معدن 2 کیلومتر است.
کانساز مزبور در داخل یک کمپلکس دگرگونی ، متشکل از فیلیت، اسلیت، کوارتز و ماسه سنگ کوارتزیتی و کنگومراهایی که بطور ضعیف دگرگون شده است تشکیل گردیده است. این کمپلکس دگرگونی بوسیله سنگ های دیگری از نوع کراتوفیر و مواد نفوذی سدیک و مواد نفوذی قلیایی، بشکل دایک قطع می شود. زمان تشکیل دایک های مذبور متفاوت است.
تپه چغارت بمناسبت سختی مواد تشکیل دهنده آن از تشکیلات اطراف خود متمایز شده است. توده معدنی در سطح زمین بطول 600 متر و ضخامت متغیر (تا 250 متر) کشیده شده است. این توده که با تشکیلات اطراف خود حد فاصل روشنی دارد محتوی آنکلاوهای زاویه داری انواع شیست و کراتوفیر می باشد.
مطالعه کانسنگ چغارت نشان داده است، کانه اصلی آن منیتیت است که بطور جزئی به هماتیت تبدیل شده است و در ان تیغک های ایلمنیت نیز تشکیل گردیده است. این کانسنگ دارای مقادیر کم پیریت و لیکن بمقدار زیاد اپاتیت است.
آپاتیت در واقع مهمترین گانگ آنرا تشکیل می دهد.
نسبت مقدار منیتیت به آپاتیت از نقطه ای به نقطه دیگر تغییر می کند. اپاتیت هم بشکل دایک مانند ظاهر شده است و هم بشکل قطعات نامنظم متشکل از بلورهای ریز واتومرف در داخل منیتیت منتشر شده است. نمونه ای از این اپاتیت های دایک مانند را در بخش شمال غربی کانسار، بطول سی متر و عرض متغیر تا چهار متر می توان ملاحظه کرد.
علاوه بر کانی های مذکور در بالا کانی اسفن نیز به شکل بلورهای اتومرف و مجتمع در کانسنگ دیده می شود. در واقع اسفن و ایلیمنیت دو کانی تیتانیوم دار کانسنگ را تشکیل می دهد.
درباره منشاء کانسار جغارت و توده های دیگر ناحیه بافق نظریات متفاوتی از طرف زمین شناسان مختلف ابراز شده است. بطور کلی عده ای منشأ آنها را به دگرسانی جانشینی و عده ای دیگر به تفریق ماگمایی نسبت می دهند.
دلیل که برای منشأ دگر سانی پتوماتولیتی این کانسارها ذکر شده است پیدایش مقداری سولفور (پیریت...) در کانسنگ است. کانسارهای چغارت ، باربارا-چادر ملو: چاه گز، لکه سیاه با وجود متفاوت بودن مقدار آپاتیت شان از هیمن منشأ معرفی شده است. دلایلی که برا ی تشابه توده ای آهن بافق از لحاظ منشأ و تیپ آنها با توده آهن کی رونا (سوئد) ذکر شده است عبارتست از :
1- توده معدنی دارای حد و مرز مشخصی نسبت به تشکیلات اطراف است (حالت حد واسط و تدریجی بین کانسار و سنگ میزان وجود ندارد)
2- مقدار اپاتیت در کانسنگ زیاد است. این کانی هم بصورت بلورهای اتومرف در داخل منیتیت متبلور شده است و هم بشکل دایک مانند، توده منیتیت و سنگ میزبان را قطع کرده است. بنابراین می توان تصور کرد که مایع مادر آپاتیت، قبلاً و در طول تبلور منیتیت و بعد از آن نیز وجود داشته است.
3- نتیجه تجزیه شیمیایی کانسنگ، تشابه ترکیب آن را با ترکیب کانسنگ کی رونا مدل می دارد.
4- وجود تیتانیوم و وانادیوم نسبتاً زیاد در ترکیب کانسنگ بیشتر دلیل منشأ ماگمایی کانسار است تا پدیده دگر سانی
5- مقدار سولفور در ترکیب کانسنگ بسیار کم است.
6- انکلزیون های زاویه داری از سنگ های مجاور دیده می شود که در جهات مختلف در منیتیت داخل شده است.
7- ساخت و بافت جریانی اپاتیت و منیتیت
8- سنگ های سدیک ـ مانند کانسارکی رونا ـ در مجاورت بلا فصل کانسار زیاد است.
9- منشاأ آپاتیت را در چنان مقیاس و مقدار مشکل بتوان به دگر سانی نسبت داد
معدن چغارت به صورت یک تپه بیضوی است که دارای طول حدود 1 کیلومتر و اندازه قطر بزرگ آن 800 متر و قطر کوچک آن 300 متر و ضخامت آن 400-350 متر و عمقش 600-550 متر است. استخراج معدن به صورت روباز و پلکانی است که ارتفاع پله ها 1 متر بوده که در مرحله نهایی به 300 متر می رسد. عرض جاده های داخل معدن 20 متر و با شیب 8 درصد و عرض پله های ایمنی 10-8 می باشد. شیب جزئی پله های نهائی 69 درجه و شیب کلی 53-48 درجه طراحی شده است.
کانسار مذبور در داخل یک کمپلکس دگرگونی با ترکیب ترمولیت ـ اکتینولیت ، فلدسپات و قطعات آلتره شده قرار گرفته که این کانسار به خاطر سختی مواد تشکیل دهنده آن از تشکیلات اطراف خود متمایز می شود.
این توده با تشکیلات اطراف خود حد فاصل روشنی دارد که محتوی انکلاوهای زاویه داری از نوع شیست و کراتوفیری است. این مجموعه کاملاً نامتجانس در یک روند چین خوردگی ساختمان آنتی کلاین و سین کلاین پیدا کرده است که سنگ اهن به صورت درزه ـ رخ ـ دیده می شود.
کانه اصلی کانسار مگنتیت است که در بعضی جاها مارتیتی شده است. هماتیت به مقدار کم وجود دارد که بصورت رگه های قرمز رنگ در مرمریت ها یده می شود.
در این منطقه همه کانسارها پشت سر هم عمل کرده و برروی هم قرار دارند و بلورهای تیپکیت هم در منطقه وجود دارد که از جمله فنوکریستهای کوارتز، بلورهای آمفیبول به طول cm 30 و آپاتیت به طول 3/1 – 1 متر وجود دارد.
مهمترین باطله معدن آپاتیت است که از بلورهای خیلی ریز تا توده های خیلی بزرگ و بلورهای درشت به وزن یک تن هم در معدن وجود دارد که مقدار آن در شمال شرق و غرب معدن و حاشیه شمال شرقی بسیار زیاد است.
مگنتیت در بعضی جاها به گوتیت ، هیدرو گوتیت والیژیست تبدیل شده و در جاهای دیگر هم مگنتیت مارتیتی شده به هماتیت تبدیل شده و در آخر هم به لیمونیت تبدیل می شود که لیمونیت در کلاهک آهنی دیده می شود و در وسط آهن و در اطراف هم ریولیت دیده می شود.
از گرانیت آهن دار تا آمفیبول آهن دار در منطقه داریم. کانی مزاحم فسفر است و همچنین کانیهای اورانیم دار ، اسفن و ایلمینیت که اورانیم به کارتوزیت هم تبدیل شده است و رنگ قرمز کانی ها به خاطر وجود کافی توریم تیتان دار و سزیم دار است. کانسار در مجموعه ای از ترمولیت ـ اکتیولیت تشکیل شده که علاوه بر این دارای کوارتز کلسیت ـ آپاتیت ـ ایلمینیت ـ پیروکسن ـ کلریت ـ تالک ـ آلبیت ـ میکروکلین ، پیریت ـ اسفن ـ کالکوپیریت است.
از نظر زمین شناسی معدن چغارت بین دو گسل کوه بنان در شرق و پشت با دام در غرب قرار دارد و در این منطقه بیشتر سازندها آذر آواری است که در ارتباط با ولکانسیم زیر دریایی می باشد در این منطقه ماگماتیسم های بی مودال اتفاق افتاده یعنی سنگهایی با ترکیب آلکالن ـ کالک آلکالن و حتی تولئیت وجود دارد.
این منطقه را به طور کلی جزء سری ریزودرنظر می گیرند. در این قسمت بلوک رخنمونهای دگرگونی با سن پرکامبرین دیده می شود که بیشتر از نوع سنگهای آتش فشانی آذر آواری به همراه مرمر آهکی و دولومیتی است.
آهن در این منطقه به صورت متاسوماتیک تشکیل می شود این سنگهای ماگمایی محدود به پرکامبرین نیستند و به ردیفهای کامبرین پیشین ـ کامبرین پسین مثل ریزو تعلق دارد به نظر می رسد که تکرار فرآیندهای دگرگونی و ماگمایی در زمانی پرکامبرین پسین ـ تریاس پسین و ژوراسیک میانی اتفاق افتاده است. همچنین از ویژگی های کانسارهای معدن سنگهای جوان تر یعنی کربناتهای کرتاسه می باشد که دگرگون شده اند.
کانسارهای مزبور در داخل یک کمپلکس دگرگونی شامل فلیت ـ اسلیت ـ کوارتز و ماسه سنگ کواتزیتی و کنگومراهائی که به طور ضعیف دگرگون شده تشکیل گردیده است این کمپلکس بوسیله سنگهای از نوع کراتوفیر و مواد نفوذی سدیک قلیایی به شکل دا یک قطع می شود.
این منطقه همه فازهای کوهزایی را پشت سرگذاشته است گسلهای کوه بنان و کوه دلیران کنترل کننده کانسارزایی ناحیه بافق ساغندهستند.
که بلوک پرکامبرین بافق را تشکیل می دهند که دارا

دانلود با لینک مستقیم


دانلود مقاله بررسی وضعیت سنگ آهن در ایران و جهان

دانلودمقاله بررسی اثرات مصرف کودهای حاوی آهن

اختصاصی از زد فایل دانلودمقاله بررسی اثرات مصرف کودهای حاوی آهن دانلود با لینک مستقیم و پر سرعت .

 

 

 

 


به منظور بررسی اثرات مصرف کودهای حاوی آهن ،منگنز،روی ومس وهمچنین تعیین حد بحرانی این عناصر درخاک های شدیداٌ آهکی طی سالهای 1375 تا 1378 چهار تحقیق گلخانه،هرتحقیق بر روی تعدادی از خاکهای مزارع گندم کاری منطقه زیر سددرود زن ،واقع در50 کیلومتری غرب شیراز انجام گرفت . خاکهای مورد مطالعه دارای کربنات کلسیم معادل 31 تا 49 در صد بودند و دامنه تغییرات عناصر عصاره گیری شده با روشDTPA در خاک مورد مطا لعه به ترتیب آهن از 2.8تا 12.8 ومنگنز از 2.3تا10.8 ،روی از 22.تا 1.12ومس از 36.تا2.28 میلی گرم در کیلوگرم خاک متغیر بود.آزمایش در سه تکرار و در قالب طرح کاملاًتصادفی بر روی گندم بهاره Triticum aestivum.L رقم غلات به اجرا در آمد. نتایج نشان داد مصـرف هـر یک از عناصرآهـن ،منگنز ،روی ومس در مقایسه با شاهد مربوطه موجب افزایش عملکرد دانه (به ترتیب 8و13و17 و5درصد) عملکردکلش(به ترتیب10و11و13و6درصد) غلظت عنصرمورد آزمایش در دانه به ترتیب (16و11و127و23 در صد )غلظت آنها در کلش به ترتیب (26و35و88و12در صد ) جذب عنصر مورد آزمایش توسط دانه به ترتیب (25و24و127 و23درصد) وجذب آنها توسط کلش به ترتیب(37و47و112و18) در صد گردید . با مصرف عناصرفوق میزان پروتئین ، وزن هزار دانه وتعداد دانه در خوشه به طور معنی داری افزایش یافت.
حدود بحرانی آهن ،منگنز ،روی و مس در خاک نیز به ترتیب4 -4/3-74/0 و8/0 میلی گرم در هر کیلو گرم تعیین گردید .گندم برای رشد بهتر به مواد غذائی مختلف از جمله عناصر غذائی کم مصرف آهن ،روی ،منگنزو مس نیاز دارد .کمبود این عناصر در خاک نه تنها موجب کاهش عملکرد گیاه می گرددبلکه از طریق کاهش غلظت این عناصر در مواد غذایی ،از جمله دانه گندم موجب کاهش جذب آنها به وسیله انسان و دام می شود که این امرباعث بروز بیماریهای مختلف و در نتیجه پایین آمدن سطح بهداشت و سلامتی جامعه می گرددو کمبود این عناصر در مناطق خشک و نیمه خشک و در خاک های با واکنش قلیایی،خاک های شنی ،خاک های فرسایش یافته وبه خصوص در خاک های آهکی شیوع بیشتری دارد .(ولچ وهمکاران 1991) در بیش از 30 کشور جهان که تحقیق صورت گرفته معلوم گردید که بیش از30در صد از خاک ها به نوعی به کمبود یک یا چند عنصر کم مصرف مبتلا هستند .
چاک ماک و همکاران ( 1996)با بررسی وضعیت روی در خاک های ترکیه آن رامشکل بزرگ گندم کاری در منطقه آناتولی ذکر نموده اند .محققان اخیراً گزارش کرده اند که در اثر مصرف روی عملکرد گندم 5تا554 و به طور متوسط 43 در صد افزایش یافته بود.
آگروال (1992) ضمن مطا لعه نیاز گندم به عناصر کم مصرف ،حد بحرانی آهن، منگنز،روی،مسدر خاک های زیر کشت گندم را به ترتیب 5-5/5-8/0-78/0 گزارش نموده است.
تاندون(1995)افزایش عملکرد گندم بر اثر مصرف آهن ،منگنز،رویفمس را به ترتیب 780-540-860-480 کیلو گرم در هکتار گزارش کرده است .
چیبا و همکا ران(1994) با انجام یک تحقیق گلخانه ایبر روی گندم اثرات مصرف مقادیر صفر تا640میلی گرم مس در کیلو گرم خاک مطالعه نمودندو نتیجه گرفتند که عملکرد دانه و ماده خشک گندم بامصرف مس تا10 میلی گرم در کیلو گرم خاک روندافزایش سریع ،از10تا20میلی گرمدر کیلو گرمروند افزایش کند و از 20تا40 میلی گرم در هر کیلو گرم خاک روندکاهشی داشته است.به طوری که باتصرف بیش از 40میلی گرم در کیلو گرم خاک علائم مسمومیت ظاهر گردید.
مجیدی (1376) با مصرف سولفات روی عملکردو متوسط غلظت روی در دانه را در کردستان افزایش داد.
نتایج در سال تحقیق توسط محققان موسسه تحقیقات خاک و آب در بیش از دو هزار مزرعه گندم در سراسر ایران حاکی از اثرات مثبت مصرف آهن و روی بر عملکردو غنی سازی گندم بوده است .در این تحقیقات مصرف 10 کیلو گرم در هکتار سکسترین آهن و40 کیلو گرم در هکتار سولفات روی ،محصول گندم را به طورمتوسط به ترتیب 463و483 کیلو گرم در هکتار افزایش داد.
بالا وآهک فراوان زمینه را برای کمبودعناصرکم مصرف فراهم می سازد. PH
مهمترین نقش منگنز ،دخالت این عنصر در آزادسازی اکسیژن فتوسنتزی در جریان شکستن مولکول آب است.به همین دلیل کمبود منگنزموجب کاهش فتوسنتزمی شود.در اثر کاهش فتوسنتز گیاهی میزان کربوهیدرات های محلول به خصوص درریشه ها به میزان زیادی کاهش می یابد .کاهش کربوهیدرات موجب کاهش تعداد دانه در خوشه و وزن هزار دانه ودر نتیجه موجب کاهش عملکردمی گردد.(مارشنر1995) همچنین اعلام شده است که مصرف روی در گندم موجب افزایش ارتفاع گیاه،تعدادپنجه وسرعت پنجه زنی شده و از طرفی سرعت رشد گیاه را تسریع کرده و موجب زود رسی دانه می گردد.علاوه بر این در اثر کمبود روی ،تشکیل پرچم ودانه گرده گندم آسیب دیده ودرنتیجه عملکرددانه به شدت پایین می آید.(براون وهمکاران 1993) ومحققین علت امر را کاهش مقدارIAA وپروتئین ذکر نموده اند.
نامبیار(1976) نیز در تحقیقی نشان داده است که مصرف سولفات مس موجب افزایش تعداد دانه در خوشه،تعداد خوشه در گیاه ووزن هزار دانه می گردد وبه همین دلیل افزایش عملکرد گندم در اثر مصرف مس در خاکهای فقیراز لحاظ این عنصر قابل انتظار است.
اگراوال (1992) نیز ضمن تعیین نیاز گندم به عناصر کم مصرف نشان داد که مصرف این عناصر موجب افزایش غلظت وهمان عنصر در برگ و همچنین افزایش عملکرد دانه گندم می شود.
تحقیقات محمد و همکاران 1990 حاکی از تاثیر مثبت مصرف آهن و روی بر غلظت ،جذب وعملکرد دانه می باشد. این محققین نشان دادند که محلول پاشی موجب ایجاد بالاترین غلظت و جذب این عناصر در اندام هوایی و مصرف خاکی موجب ایجاد بالاترین غلظت و جذب آهن در دانه می شود و اینکه کاربرد آهن و روی به هر روشی، عملکرد ماده خشک گندم را بالا می برد.
بانسال(1990)نیز نشان داد که بین روی در خاک و عملکرد دانه و عملکرد کل گندم رابطه معنی داری وجود دارد. وی حد بحرانی روی در خاک را 75/0 میلی گرم در هر کیلو گرم خاک تعیین نمود.
در تحقیقی توسط عبدالحسین ضیائیان و محمد جعفر ملکوتی در بررسی اثرهای مصرف سولفات منگنز به افزایش عملکرد و غنی سازی گندم آبی و تعیین حد بحرانی آن در خاکهای شدیداً صورت گرفت. در این تحقیق اثر دو سطح صفر و 10 میلی گرم منگنز به ازاء هر کیلوگرم خاک از منبع سولفات منگنز در گلدانهایی با گنجایش پنج کیلوگرم خاک در سه تکرار در قالب طرح کاملاً تصادفی مطالعه گردید و نتایج نشان داده که مصرف منگنز موجب افزایش معنی داری به ترتیب معادل 9 و35 و 47 درصد در وزن ماده خشک وغلظت و جذب کل منگنز در اندامهای هوایی گردیده است وبا مصرف منگنز مقدار پروتئن دانه، وزن هزار دانه و تعداد دانه در خوشه بطور معنی داری افزایش یافت.
تحقیقات امامی و بهبهانی زاده (1989) نیز حاکی از تاثیر مثبت منگنز بر تولید ماده خشک گیاهی بود.
اوکی (1984) اعلام نمود که کمبود منگنز تا 16 درصد از وزن اندامهای هوایی را می کاهد. وی علت این امر را به کاهش فتوسنتز و متابولیسم گیاهی ربط داد.
تحقیقات نشان می دهد که بر اثر سولفات منگنز، غلظت منگنز در اندامهای هوایی از 51.5 به 69.5 میکرو گرم در گرم و جذب آن توسط اندامهای فوق از 579 به 852 میکروگرم در گلدان افزایش یافته است.
تحقیقات امامی و بهبهانی زاده نیز حاکی همبستگی مثبت بین منگنز خاک وغلظت منگنز بود.
اوکی (1984) نیز گزارش نمود که با مصرف 20 کیلوگرم منگنز در هکتار غلظت منگنز در ساقه و دانه افزایش یافت.
تاندون (1990) افزایش عملکرد گندم در اثر مصرف منگنز در هندوستان را 560 کیلو گرم در هکتار ذکر کرد.
اگراوال (1991) نیز نشان دادکه منگنز اثر مثبتی برعملکرد دانه داشته است.
- با افزایش میزان منگنز قالب جذب خاک، غلظت و جذب کل این عنصر در دانه افزایش یافت.
- خالد و مالک (1982) نیز با آغشته نمودن بذور به منگنز غلظت این عنصر در دانه را بالا بردند.
داده های بدست آمده نشان داد که با مصرف سولفات منگنز در خاک میزان پروتئین کندم از 11.9 به 13.4 درصد افزایش یافته که این افزایش از لحاظ آماری در سطح 1 % معنی دار و معادل 13% بوده است . علاوه بر این بر اثر کاربرد منگنز تعداد دانه در خوشه از 32.2 به 35.7 و وزن هزار دانه از44.3 به 46.3 افزایش یافته است.
بطور کلی حد بحرانی منگنز بسته به PH خاک و نوع عصاره گیر از 0.4 تا 8 میلی گرم در کیلوگرم خاک تغییر می کند.
در تحقیقی دیگر تحت عنوان تولید گندم و بهبود سلامتی دام از طریق مصرف سولفات روی در مزارع گندم کشور صورت گرفته است. بر پایه یافته های این محقق کمبود عناصر آهن و روی حتی تا 50% در غذای افراد جامعه مشهود می باشد که این به کمی مصرف عناصر ریز مغذی بر می گردد. به طوری که در کشورهای غربی 2تا 4 در صد کود مصرفی را کودهای محتوی عناصر کم مصرف تشکیل می دهند . در حالی که این در صد در کشور ما نزدیک به صفر می باشد .
در سال زراعی 75-74 طرحی با استفاده از منابع مختلف روی ( سولفات روی و اکسید روی)به مقادیر20تا40کیلوگرم برهکتار در مزارع آبی و 10 تا20 کیلوگرم در مزارع دیم از دو منبع مختلف صورت گرفته است.
نتایج اولیه نشان داد که اثر مقادیر مختلف روی بر افزایش عملکرد در سطح یک در صد معنی دار ولی اثر منابع مختلف روی ،فقط در بعضی از مناطق در سطح پنج در صد معنی دار گردید .مصرف سولفات روی نسبت به اکسید روی ،عملکرد گندم را بیشتر افزایش داد.
روی،جریان اعمال موثر حیاتی بدن نظیر نگهداری و کارکرد سیستم آنزیمها و سلولها را هدایت و سرپرستی می کند .در کار امتزاج و پیوند پروتئین اهمیت دارد .انقباض عضلات را کنترل می کند وبه تشکیل انسولین کمک میکند دراعمال مغزومعالجه شیزوژنی دخالت می کند و برای ترکیب و تشکیلDNAلازم است. التیام یافتن زخمهای داخلی و خارجی را تسریع می کند . به معالجه ناراحتی های پروستات کمک می کند و رسوب کلسترول در رگها را کاهش می دهد .حس چشایی را تقویت می کندوغیره و مقدارمصرف توصیه شده برای بزرگسالان 15 میلی گرم است .برای زنان بار دار و شیرده کمی بیشتر بوده و کسانی که زیاد عرق می کنند به 30 میلی گرم از این عنصر در روز نیاز دارند .در غذاهای کنسروشده و مواد غذایی حاصل ازخاکهای دارای کمبود روی مقدار آن خیلی ناچیز است. تصلب شرایین و احتمالاً بزرگ شدن پروستات از علائم کمبود آن در بدن میباشد. گوشت ران گوساله و بره ،جوانه گندم ،مخمر آبجو،تخمه کدو،تخم مرغ ،شیرخشک بی چربی از بهترین منابع
طبیعی روی می باشند. روی به صورت قرص های سولفات روی عرضه می شود. غالباً در قرص های مولتی ویتامین و مواد معدنی موجود است .روی همراه با ویتامین ب-کمپلکس-ویتامین ث و منیزیوم هم عرضه می شود .روی خوشبختانه مسمومیت ایجاد نمی کند ومصرف بیش از 150 میلی گرم آن توصیه نمی شود .
ذکر چند مورد در مورد روی ضروری است:
اگر ویتامین B6 بیشتری مصرف شود به روی بیشتری احتیاج است و در مورد اشخاص مبتلا به بیماری قند نیز چنین است.
-به مردان با ناراحتی پروستات توصیه می شود که غلظت روی را در بدن خود بالا نگهدارند .
در مورد معالجه ضعف جنسی مصرف توام ویتامین B6 با روی موفقیت آمیز بوده است.
در اشخاص سالخورده مصرف روی و منگنز مفید بوده است برای تنظیم کردن عادت ماهانه خانمها قبل از اینکه به هورمون متوسل شوند بهتر است به عنوان مکمل غذایی از روی استفاده نمایند .
کمبود توام آهن و روی در مواد غذایی ایران عارضه ای بنام کم خونی ایجاد کرده است که در منابع خارجی از آن یاد شده است .
سولفات روی پاسخ های گیاهان زراعی را تا چهار نوبت کشت تحت تاثیر قرار می دهد و علت آن تبدیل سریع یخش مهمی از روی محلول به روی کربناتی کم محلول در این خاکهااست.وکربنات روی شکل مهم نگهداری روی مصرفی در خاک های آهکی بوده و می توان آن را به شکل بالقوه قابل استفاده این عنصر در خاک به حساب آورد.
توصیه شده است همزمان با مصرف سولفات روی در مزارع گندم آبی سایر عناصر کم مصرف نظیر آهن،منگنزومس نیز به کار رود. گر چه نتایج تحقیقات نشان داده با مصرف سولفات روی و یا سایر عناصر کم مصرف ممکن است کاهش یافته و در نتیجه احتمال بروز کنش های تغذیه ای مطرح شود.
نظر به اینکه سولفات روی اثرات باقیمانده قابل توجهی ازخودبجای می گذارد ( سولفات روی به کربنات روی تبدیل می شود.) بنابراین نیاز به مصرف همه ساله آن در مزارع نمی باشد و مصرف هر دو سال یکبار آن توصیه می گردد.
بهتر است این کود را قبل از کاشت مشابه کودهای فسفاته زیر خاک نمود. و یا بصورت محلول پاشی با غلظت پنج در هزار حداقل سه بار در فصل رشد از آن استفاده نمود. و به هیچ وجه مصرف آن با آب آبیاری و یاپخش آن در سطح خاک توصیه نمی شود.

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   10 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید

 


دانلود با لینک مستقیم


دانلودمقاله بررسی اثرات مصرف کودهای حاوی آهن

دانلود مقاله آهن زنگ نزن

اختصاصی از زد فایل دانلود مقاله آهن زنگ نزن دانلود با لینک مستقیم و پر سرعت .

 

 

 زنگ زدن عبارتی است که به اکسیداسیون آهن اطلاق می‌شود. اکسیداسیون آهن معمولا از طریق واکنش با اکسیژن صورت می‌گیرد اما نوع‌های دیگری از زنگ زدن وجود دارد که حاصل واکنش آهن و کلر است که به آن زنگ سبز می‌گویند. “زنگ” نام متداول یکی از ترکیبات بسیار رایج یعنی اکسید آهن با فرمول Fe2O3 است. این نام رایج است زیرا آهن به سرعت با اکسیژن ترکیب شده و تشکیل زنگ آهن را می دهد. در حقیقت آهن را به ندرت می توان به صورت خالص در طبیعت پیدا کرد. زنگ آهن (یا فولاد) نمونه ای از فرایند خوردگی است: فرایند الکتروشیمیایی شامل آند (یک قطعه فلز که به راحتی الکترون از دست می دهد)، الکترولیت (مایعی که به حرکت الکترون ها کمک می کند) و یک کاتد (یک قطعه فلز که به راحتی الکترون می پذیرد) است. وقتی فلزی خورده می شود، الکترولیت به تولید اکسیژن در آند کمک می کند. سپس اکسیژن با فلز ترکیب شده و الکترون آزاد می شود. وقتی الکترون ها از طریق الکترولیت به سمت کاتد جریان می یابند، آند با جریان الکتریکی حذف می شود یا به کاتیون های فلزی تبدیل شده و زنگ تشکیل می شود.
اکسیده شدن آهن
برای این که آهن اکسید شود به سه ماده نیاز است: آهن، آب و اکسیژن. و اما فرایند زنگ زدن: با افتادن یک قطره آب بر روی اشیای آهن فورا دو اتفاق می افتد. نخست آن که آب به عنوان یک الکترولیت خوب با دی اکسیدکربن موجود در هوا واکنش داده و اسید کربنیک که یک اسید ضعیف است تشکیل می شود. اسید کربنیک نسبت به آب، الکترولیت بهتری است. پس از تشکیل اسید و حل شدن آهن در آن، ملکول های آب به اجزای سازنده آن یعنی اکسیژن و هیدروژن تبدیل می شود. اکسیژن آزاد و آهن حل شده با هم پیوند داده و اکسید آهن را تشکیل می دهند. در این فرایند الکترون آزاد می شود. الکترون های آزاد از بخش آند که همان آهن است به سمت کاتد که ممکن است فلزی با واکنش پذیری کمتر از آهن یا بخش دیگری از سطح آهنی باشد، جریان می یابد. مایعاتی مانند باران های اسیدی، آب دریا و افشانه نمکی برای ذوب کردن برف جاده های یخی به علت ترکیبات موجود در آنها نسبت به آب الکترولیت های قوی تری هستند. به همین دلیل آهن و فلزات دیگر در این محیط ها با سرعت بیشتری زنگ زده و خورده می شوند.
چرا آهن زنگ می زند؟
آیا توجّه کرده اید که بعضی از فلزات زنگ می زنند و بعضی دیگر٬زنگ نمی زنند؟آهن معموأ زنگ می زند. به همین علّت است که وقتی رنگ قسمتی از بدنه اتومبیل از بین می رود٬هوا باعث می شود که آهن زیر قسمت رنگ شده خیلی زود زنگ بزند.
برای آن که آهن با اکسیژن موجود در هوا ترکیب می شود و اکسیدآهن قرمز رنگ را (که همان زنگ آهن است) تولید می کند. در هر صورت نوعی آهن وجود دارد که زنگ نمی زند. اختراع یاکشف این آهن امری تصادفی بود! در سال۱۹۱۳ هری بریرلی٬ که متخصص ذوب فلزات بود٬ برای ساختن لوله تفنگ٬ دنبال فلزی مناسب می گشت. از این رو فلزات گوناگون را با هم ترکیب کردو آلیاژهای مختلفی به دست آورد. امّا پس از انجام آزمایش ها٬ تمام نمونه ها را به گوشه ای انداخت. چند ماه بعد متوجّه شد در حالی که همه نمونه های دور ریخته شده٬ زنگ زده اند٬ یکی از آنها زنگ نزده است! بریرلی این آلیاژ را با دقّت بررسی کرد و فهمید که ۱۴٪ آن کروم است.
به این ترتیب فلز زنگ نزن یا استنلس استیل وارد زندگی بشر شد. امروزه اغلب لوازم آشپزخانه ها از آهن زنگ نزن هستند. جنس بیشتر دیگ ها٬ کتری ها٬ ماهی تابه ها٬ قاشق و چنگال ها٬ چاقو ها و لگن ظرفشویی آشپزخانه ها از آهن زنگ نزن است؛ همین طور بسیاری از لوازم جرّاحی و قطعات خودرو ها از این فلز ساخته می شوند. فولاد زنگ نزن ، جزو فلزات بسیار مقاوم در برابر خوردگی است و در صنایع شیر آلات مورد استفاده قرار می‌گیرد. این نوع فولاد ، آلیاژ فولاد با کروم می‌‌باشد و گاهی نیکل نیز به ‌این آلیاژ اضافه می‌‌شود.
نکته:کروم یا کرومیوم فلزی سخت٬خاکستری و دیر گداز است با علامت اختصاریcr.
نکته:آلیاژ فلزی است که از ترکیب دو یا چند فلز به دست می آید.
کاربردهای آهن
کاربرد آهن از تمامی فلزات بیشتر است و 95 درصد فلزات تولید شده در سراسر جهان را تشکیل می‌دهد. قیمت ارزان و مقاومت بالای ترکیب آن استفاده از آنرا بخصوص در اتومبیلها ، بدنه کشتی‌های بزرگ و ساختمانها اجتناب ناپذیر می‌کند. فولاد معروف‌ترین آلیاژ آهن است و تعدادی از گونه‌های آهن به شرح زیر می‌باشد:
• آهن خام که دارای 5%- 4% کربن و مقادیر متفاوتی ناخالصی از قبیل گوگرد ، سیلیکون و فسفر است و اهمیت آن فقط به این علت است که در مرحله میانی مسیر سنگ آهن تا چدن و فولاد قرار دارد.
• چدن ، شامل 5/3%-2% کربن و مقدار کمی منگنز می‌باشد. ناخالصی‌های موجود در آهن خام مثل گوگرد و فسفر که خصوصیات آنرا تحت تاثیر منفی قرار می‌دهد، در چدن تا حد قابل قبولی کاهش می‌یابند. نقطه ذوب چدن بین k 1470-1420 می‌باشد که از هر دو ترکیب اصلی آن کمتر است و آنرا به اولین محصول ذوب شده پس از گرم شدن همزمان کربن و آهن تبدیل می‌کند. چدن بسیار محکم ، سخت و شکننده می‌باشد. چدن مورد استفاده حتی چدن گرمای سفید موجب شکستن اجسام می‌شود.
• فولاد کربن شامل 5/1% – 5/0% کربن و مقادیر کم منگنز ، گوگرد ، فسفر و سیلیکون است.
• آهن ورزیده ( آهن نرم) دارای کمتر از 5/0% کربن می‌باشد و محصولی محکم و چکش‌خوار است، اما به اندازه آهن خام گدازپذیر نیست. حاوی مقادیر بسیار کمی کربن است ( چند دهم درصد). اگر یک لبه آن تیز شود، به‌سرعت تیزی خود را از دست می‌دهد.
فولادهای آلیاژ حاوی مقادیر متفاوتی کربن بعلاوه فلزات دیگر مانند کروم ، وانادیم ، مولیبدن ، نیکل ، تنگستن و … می‌باشد. اکسیدهای آهن برای ساخت ذخیره مغناطیسی در کامپیوتر مورد استفاده قرار می‌گیرند. آنها اغلب با ترکیبات دیگری مخلوط شده و خصوصیات مغناطیسی خود را بصورت محلول هم حفظ می‌کنند.
انواع پوشش های محافظ آهن
پوشش های رنگها و جلاها
ساده‌ترین راه مبارزه با خوردگی ، اعمال یک لایه رنگ است. با استفاده ‌از رنگها بصورت آستر و رویه ، می‌‌توان ارتباط فلزات را با محیط تا اندازه‌ای قطع کرد و در نتیجه موجب محافظت تاسیسات فلزی شد. به روشهای ساده‌ای می‌‌توان رنگها را بروی فلزات ثابت کرد که می‌‌توان روش پاششی را نام برد. به کمک روشهای رنگ‌دهی ، می‌‌توان ضخامت معینی از رنگها را روی تاسیسات فلزی قرار داد. آخرین پدیده در صنایع رنگ سازی ساخت رنگهای الکتروستاتیک است که به میدان الکتریکی پاسخ می‌‌دهند و به ‌این ترتیب می‌توان از پراکندگی و تلف شدن رنگ جلوگیری کرد.
پوشش های فسفاتی و کروماتی
این پوششها که پوششهای تبدیلی نامیده می‌‌شوند، پوششهایی هستند که ‌از خود فلز ایجاد می‌‌شوند. فسفاتها و کروماتها نامحلول‌اند. با استفاده ‌از محلولهای معینی مثل اسید سولفوریک با مقدار معینی از نمکهای فسفات ، قسمت سطحی قطعات فلزی را تبدیل به فسفات یا کرومات آن فلز می‌‌کنند و در نتیجه ، به سطح قطعه فلز چسبیده و بعنوان پوششهای محافظ در محیط‌های خنثی می‌‌توانند کارایی داشته باشند. این پوششها بیشتر به ‌این دلیل فراهم می‌‌شوند که ‌از روی آنها بتوان پوششهای رنگ را بر روی قطعات فلزی بکار برد. پس پوششهای فسفاتی ، کروماتی ، بعنوان آستر نیز در قطعات صنعتی می‌‌توانند عمل کنند؛ چرا که وجود این پوشش ، ارتباط رنگ با قطعه را محکم‌تر می‌‌سازد. رنگ کم و بیش دارای تحلخل است و اگر خوب فراهم نشود، نمی‌‌تواند از خوردگی جلوگیری کند.
پوشش های اکسید فلزات
اکسید برخی فلزات بر روی خود فلزات ، از خوردگی جلوگیری می‌‌کند. بعنوان مثال ، می‌‌توان تحت عوامل کنترل شده ، لایه‌ای از اکسید آلومینیوم بر روی آلومینیوم نشاند. اکسید آلومینیوم رنگ خوبی دارد و اکسید آن به سطح فلز می‌‌چسبد و باعث می‌‌شود که ‌اتمسفر به‌ آن اثر نکرده و مقاومت خوبی در مقابل خوردگی داشته باشد. همچنین اکسید آلومینیوم رنگ‌پذیر است و می‌‌توان با الکترولیز و غوطه‌وری ، آن را رنگ کرد. اکسید آلومینیوم دارای تخلخل و حفره‌های شش وجهی است که با الکترولیز ، رنگ در این حفره‌ها قرار می‌‌گیرد. همچنین با پدیده ‌الکترولیز ، آهن را به ‌اکسید آهن سیاه رنگ (البته بصورت کنترل شده) تبدیل می‌‌کنند که مقاوم در برابر خوردگی است که به آن “سیاه‌کاری آهن یا فولاد” می‌‌گویند که در قطعات یدکی ماشین دیده می‌‌شود.
پوشش های گالوانیزه
گالوانیزه کردن (Galvanizing) ، پوشش دادن آهن و فولاد با روی است. گالوانیزه ، بطرق مختلف انجام می‌‌گیرد که یکی از این طرق ، آبکاری با برق است. در آبکاری با برق ، قطعه‌ای که می‌‌خواهیم گالوانیزه کنیم، کاتد الکترولیز را تشکیل می‌‌دهد و فلز روی در آند قرار می‌‌گیرد. یکی دیگر از روشهای گالوانیزه ، استفاده ‌از فلز مذاب یا روی مذاب است. روی دارای نقطه ذوب پایینی است. در گالوانیزه با روی مذاب آن را بصورت مذاب در حمام مورد استفاده قرار می‌‌دهند و با استفاده ‌از غوطه‌ور سازی فلز در روی مذاب ، لایه‌ای از روی در سطح فلز تشکیل می‌‌شود که به ‌این پدیده ، غوطه‌وری داغ (Hot dip galvanizing) می‌گویند. لوله‌های گالوانیزه در ساخت قطعات مختلف ، در لوله کشی منازل و آبرسانی و … مورد استفاده قرار می‌‌گیرند.
پوشش های قلع
قلع از فلزاتی است که ذاتا براحتی اکسید می‌‌شود و از طریق ایجاد اکسید در مقابل اتمسفر مقاوم می‌‌شود و در محیطهای بسیار خورنده مثل اسیدها و نمکها و … بخوبی پایداری می‌‌کند. به همین دلیل در موارد حساس که خوردگی قابل کنترل نیست، از قطعات قلع یا پوششهای قلع استفاده می‌‌شود. مصرف زیاد این نوع پوششها ، در صنعت کنسروسازی می‌‌باشد که بر روی ظروف آهنی این پوششها را قرار می‌‌دهند.
پوشش های کادمیم
این پوششها بر روی فولاد از طریق آبگیری انجام می‌‌گیرد. معمولا پیچ و مهره‌های فولادی با این فلز ، روکش داده می‌‌شوند. روکش کادمیم مخافظ خوبی برای کالاهای آهنی و فولادی در برابر زنگ زدگی و فسادتدریجی در اثر هوا می باشد. روکش کادمیم بیشتر قسمت های اساسی هواپیماها و کشتی ها و کالاهایی که در آب و هوای گرمسیری مصرف دارد، به کار برده می شود. پوشش های کادمیم مخصوصا در محیط های طبیعی موثرند. مقاومت این پوشش ها در مقابل فساد تدریجی در مناطق روستایی بیشتر از مناطق صنعتی است.
===================
روش های کنترل زنگ زدن فلزات





ماده ای که به طور ذاتی نسبت به محیط اطراف خود مقاومت نشان می دهد و پوسیده نمی شود (البته به طور ایده آل)، اولین انتخاب در نیازهای مکانیکی و اقتصادی خواهد بود؛ متاسفانه اغلب چنین نیست و بسیاری از مواد به روشی برای کنترل زنگ خوردگی خود نیاز دارند؛ به همین دلیل سه روش عمده برای این کار وجود دارد:


اصلاح محیط اطراف ماده ای که در معرض این محیط قرار دارد


روش های کنترل الکتریکی


استفاده از روکش های محافظ

لایه نشانی و روکش به روش اسپری حرارتی برای کنترل زنگ زدن:
روکش محافظی که به روش حرارتی روی ماده مورد نظر اسپری می شود، برای بسیاری از مواد مورد استفاده است. در این روش، گزینه های لازم برای روکش کردن مواد و اسپری بسیار زیاد است. این روش به سه گروه اصلی تقسیم می شود:

روکش آندی
روکش کاتدی
روکش خنثی یا بی طرف



روش اسپری برای روکش کردن فلزات


Click this bar to view the full image.

روکش آندی
روکش آندی برای محافظت زیرلایه های آهن و فولاد تقریبا فقط به روکش های روی (Zn) و آلومینیوم (Al) یا آلیاژهای آن ها محدود می شود. محافظ زنگ زدن این زیرلایه بایستی محافظ کاتدی یا محافظ قربانی باشد. زیرلایه نقش کاتد را در این روش ایفا کرده و روکش روی آن، نقش آند قربانی را خواهد داشت. مکانیسم محافظت زنگ خوردگی فلزات به دو دسته تقسیم می شود:

محافظت کاتدی یا قربانی شدن روکش

سد محافظ در برابر محیط اطراف

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  8  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله آهن زنگ نزن

دانلود کارآموزی اداره فن آوری و اطلاعات راه آهن خراسان

اختصاصی از زد فایل دانلود کارآموزی اداره فن آوری و اطلاعات راه آهن خراسان دانلود با لینک مستقیم و پر سرعت .

دانلود کارآموزی اداره فن آوری و اطلاعات راه آهن خراسان


دانلود کارآموزی اداره فن آوری و اطلاعات راه آهن خراسان

محل کارآموزی اینجانب اداره فن آوری و اطلاعات راه آهن خراسان می‌باشد که بیشتر فعالیت این واحد را می توان در مورد سخت افزاری ،برنامه نویسی در محیط‌های مختلف، انجام شبکه و تمام اموری دانست که مربوط به کامپیوتر میشود و در راه آهن خراسان به آن نیاز است در حقیقت این واحد مشکلات کامپیوتری این اداره را حل میکند و برای بهبود و پیشرفت علمی و عملی در زمینه کامپیوتر در راه آهن خراسان به عهده این واحد میباشد.
به طور کلی در مورد این واحد و اداره از لحاظ نیروی انسانی می‌توان گفت که دارای شرایط نسبتا خوبی می‌باشد. این واحد و اداره دارای برنامه‌نویسان مسلط به برنامه‌نویسی و مهندسین سخت افزار مسلط به سخت افزار و شبکه و  ... می‌باشد.
کارها یی که در این محل انجام می شود به شرح زیر است:

مقدمه  2
معرفی محل کارآموزی2
مشخصات فیزیکی محل کارآموزی5
برخی از مزایا و معایب این بخش6
گزارشی از کار انجام شده7
زبان برنامه نویسی C#9
بانک اطلاعاتی  Sql Server 200010
مشکلات پیش آمده در حین کار10
نتایج و پیشنهادات16

 

شامل 16 صفحه فایل word


دانلود با لینک مستقیم


دانلود کارآموزی اداره فن آوری و اطلاعات راه آهن خراسان

بررسی حرکت نانوذرات اکسید آهن تثبیت شده در محیط متخلخل یک بعدی

اختصاصی از زد فایل بررسی حرکت نانوذرات اکسید آهن تثبیت شده در محیط متخلخل یک بعدی دانلود با لینک مستقیم و پر سرعت .

یکى از جدید ترین فناورى ها در تصفیه و پاکسازى آب هاى زیر زمینى آلوده استفاده از نانوذرات مى باشد. در بین نانوذرات مختلف، نانوذرات آهن به دلیل داشتن سطح ویژه بالا دارای قابلیت واکش پذیرى زیاد قدرت جذب کنندگى مطلوب و همچنین بدلیل فراوان بودن و غیر سمى بودن براى اصلاح و حذف آلودگى آبهاى زیر زمینى بسیار مورد توجه قرار گرفته اند. به منظور جلوگیری از به یکدیگر چسبیده نانوذرات آهن و تشکیل ذرات کلوئیدى بزرگترى و در نتیجه عدم نشست نانوذرات در چند سانتیمترى از محل تزریق از تثبیت کننده هاى سطحى ، پلى اکریلیک اسید استفاده شده است. در این مطالعه مشاهده مى شود که نانوذرات اکسید آهن (Fe3O4) در حضور پلى اکریلیک اسید به صورت کاملا جدا از هم و پراکنده قرار مى گیرند به طورى که قطر تقریبى آنها همچنان در مقیاس نانو مى باشد. همچنین با بررسى و مقایسه نتایج داده هاى آزمایشگاهى (منحنى رخنه تجربى، BTC) مشخص شده است که در غلظتهاى بالا و در جریان هاى نانوسیال عبورى از محیط متخلخل با سرعت کم انتقال نانوذرات کمترى صورت میگیرد و پتانسیل تخریب بیشترى بروز مى کند.

 

سال انتشار: 1392

تعداد صفحات: 8

فرمت فایل: pdf


دانلود با لینک مستقیم


بررسی حرکت نانوذرات اکسید آهن تثبیت شده در محیط متخلخل یک بعدی