اختصاصی از
زد فایل دانلود مقاله مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن دانلود با لینک مستقیم و پر سرعت .

مشخصات این فایل
عنوان: مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن
فرمت فایل: word( قابل ویرایش)
تعداد صفحات: 145
این مقاله درمورد مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن می باشد.
خلاصه آنچه در مقاله مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن می خوانید .
انواع یادگیری برای شبکه های عصبی:
1. یادگیری با ناظر:
در یادگیری با ناظر به قانون یاد گیری مجموعه ای از زوجهای داده ها به نام داده های یادگیری (Pi,Ti)i={1 … l } می دهند که در آن Pi ورودی به شبکه و Ti خروجی مطلوب شبکه برای ورودی Pi است. پس از اعمال ورودی Pi به شبکه عصبی در خروجی شبکه ai با Ti مقایسه شده و سپس خطای یادگیری محاسبه و از آن در جهت تنظیم پارامترهای شبکه استفاده می شود به گونه ای که اگر دفعه بعد به شبکه همان ورودی Pi اعمال شود خروجی شبکه به Ti نزدیکتر می گردد با توجه به این نکته که معلم سیستمی است که بر محیط وقوف دارد ( مثلا می داند که برای ورودی Pi خروجی مطلوب Ti است ).توجه داریم که محیط برای شبکه عصبی مجهول است . در لحظه k بردار ورودی (Pik) با تابع توضیع احتمال معینی که برای شبکه عصبی نا معلوماست انتخاب و بطور همزمان به شبکه عصبی و معلم اعمال می شود . جواب مطلوب (Tik) نیز توسط معلم به شبکه عصبی داده می شود . در حقیقت پاسخ مطلوب پاسخ بهینه ای است که شبکه عصبی برای ورودی مفروض باید به آن برسد . پارامترهای شبکه عصبی توسط دو سیگنال ورودی و خطا تنظیم می شود.به این صورت که پس از چند تکرار الگوریتم یادگیری که عموما توسط معادله تفاضلی بیان می شودبه پارامترهایی در فضای پارامترهای شبکه همگرا می شوند که برای آنها خطای یادگیری بسیار کوچک است و عملا شبکه عصبی شبکه عصبی معادل معلم می شود . یا به عبارتی دیگر اطلاعات مربوط به محیط (نگاشت بین TiوPi )که برای معلم روشن است به شبکه عصبی منتقل می شود و پس از این مرحله عملا می توان بجای معلم از شبکه عصبی استفاده کرد تا یادگیری تکمیل شود .
2. یادگیری تشدیدی:
یک اشکال یادگیری با ناظر این است که شبکه عصبی ممکن است بدون معلم نتواند مواضع جدیدی را که توسط مجموعه داده های جدید تجربی پوشانده نشده است یاد بگیرد . یادگیری از نوع تشدیدی این محدودیت را برطرف می کند . این نوع یادگیری بطور on-line صورت می گیرد در حالی که یادگیری با ناظر را به دو صورت on-line & off-line می توان انجام داد. در حالت off-line می توان از یک سیستم محاسب با در اختیار داشتن داده های یادگیری استفاده کرد و طراحی شبکه عصبی را به پایان رساند . پس از مرحله طراحی و یادگیری شبکه عصبی به عنوان یک سیستم استاتیکی عمل می کند . اما در یادگیری on-line شبکه عصبی همراه با خود سیستم یادگیر در حال انجام کار است و از این رو مثل یک سیستم دینامیکی عمل می کند . یادگیری از نوع تشدیدی یک یادگیری on-line از یک نگاشت ورودی-خروجی است . این کار از طریق یک پروسه سعی و خطا به صورتی انجام می پذیرد که یک شاخص اجرایی موسوم به سیگنال تشدید ماکزیمم شود و بنابر این الگوریتم نوعی از یادگیری با ناظر است که در آن به جای فراهم نمودن جواب واقعی ، به شبکه عددی که نشانگر میزان عملکرد شبکه است ارایه می شود. این بدین معنی است که اگر شبکه عصبی پارامترهایش را به گونه ای تغییر داد که منجر به یک حالت مساعد شد آنگاه تمایل سیستم یادگیر جهت تولید آن عمل خاص تقویت یا تشدید می شود . در غیر این صورت تمایل شبکه عصبی جهت تولید آن عمل خاص تضعیف می شود . یادگیری تقویتی مثل یادگیری با ناظر نیست و این الگوریتم بیشتر برای سیستمهای کنترلی کاربرد دارد .
3. یادگیری بدون ناظر:
در یادگیری بدون ناظر یا یادگیری خود سامانده پارامترهای شبکه عصبی تنها توسط پاسخ سیستم اصلاح و تنظیم می شوند . به عبارتی تنها اطلاعات دریافتی از محیط به شبکه را برداغرهای ورودی تشکیل می دهند. و در مقایسه با مورد بالا (یادگیری با ناظر) بردار جواب مطلوب به شبکه اعمال نمی شود . به عبارتی به شبکه عصبی هیچ نمونه ای از تابعی که قرار است بیاموزد داده نمی شود . در عمل می بینیم که یادگیری با ناظر در مورد شبکه هایی که از تعداد زیادی لایه های نرونی تشکیل شده باشند بسیار کند عمل می کند و در این گونه موارد تلفیق یادگیری با ناظر و بدون ناظر پیشنهاد می گردد .
2-4- زمینهای درموردperceptron
Perceptron های ساده:
یک خانواده ساده از شبکههای عصبی مدل perceptron میباشد. در یک دستهبندی تکخروجی، تعداد n ورودی و یک خروجی دارد . با هر ورودی یک ضریب وزنی Wi و با هر خروجی یک مقدار آستانه q مرتبط است.
Perceptron به گونه زیر عمل میکند:
ورودیهای Perceptron یک بردار ورودی از n مقدار حقیقی است.
Perceptron مجموع وزنها را محاسبه میکند a= ه Wi.Xi. این مقدار با مقدار آستانه q مقایسه میشود. اگر این مقدار ازمقدار آستانه کوچکتر باشد خروجی 0 است و در غیر این صورت 1 است.
قدرت Perceptron:
به وسیله تنظیم اعداد ورودی، وزن آنها و مقدار آستانه میتوان یک Perceptron برای انجام نسبتا خوب محاسبات گوناگون طراحی کرد. برای مثال توابع منطقی بولین مانند AND ، OR و NOT را میتوان به وسیله Perceptron طراحی کرد و هر مدار منطقی دیگر را به وسیله گیتهای AND و NOT یا AND و OR طراحی کرد. دستههای زیادی از Perceptronها ممکن است خروجیهای دستههای دیگر را به عنوان ورودی خود درخواست کنند.به عنوان مثالی ازPerceptron ها میتوان یک تشخیص دهنده قالب متن را نام برد. حرفA درآرایهای 5*5 بهرمز درمیآید(encode میشود). این متن(حرف) بهوسیله یک Perceptron با 25 ورودی تشخیص داده میشود که در آن وزنها مقادیری برابر با مقادیر عددی داخل آرایه را میگیرند و مقدار آســتانه برابر است با: e-25 =q که در آن 0 < e < 1 .
خروجی Perceptron 1 است اگر و فقط اگر ورودی آن از 1 و 1- هایی باشد که عینا در آرایه آمده است.
دنبالههای Perceptron:
یکی از خصوصیات جالب Perception این است که آنها میتوانند به وسیله مثالهای مثبت و منفی ( صحیح و اشتباه) برای انجام توابع دستهبندی شده مخصوص بارها مرتب شوند.
حال به یک مثال ساده از Perceptron با دو ورودیX1 وX2 ، که تشخیص میدهد که کدامیک از دو کلاس، عناصر متعلق به خودش را دارد. ما فرض میکنیم که این Perceptron دو طرح از کارکترهای چاپ شده از یک متن را بررسی کند، خروجی 1 است اگر و فقط اگر کاراکتر رقم 8 باشد. فرض کنیم که X1 بیانگر تعداد حفرههای کاراکتر است و X2 درجه راستی سمت چپ کاراکتر را نشان میدهد. ما با 4 ورودی .اگر ما perceptron را در اول کار با وزنهایی برابر 0 و مقدار آستانه را برابر 10 مقداردهی کنیم یک ردهبندی از همه مثالهای منفی انجام دادهایم. با قرار دادن ردهبندیهای نادرست از 8 ، مقادیر ورودی از مثال 8 با بعضی فاکتورها مثل d جمع میشوند و تولیدات جدید با وزنهای متناظر با ایجاد میشوند.
فرض کنیم 1= d پس وزن ورودیها از 0 به 1 و 2 رشد پیدا میکند. حال در اینجا 5 = a به دست میآید که هنوز از مقدار آستانه 10 کوچکتر است. مثال هنوز به ردهبندی صحیحی نرسیده است واین قدم دنباله باید تکرار شود. بعد از دو قدم وزنها برابر 2 و 4 میشوند که مقدار 10 = a را نتیجه میدهد که برابر مقدار آستانه است و مثال مثبت از 8 به طور صحیح دستهبندی شده است. از آنجا که ضرایب وزنی تغییر کرده بودند لازم است که در همه مثالها ردهبندیها بازنشان ( Reset ) شوند. این را میتوان به سادگی دید که مثال B ردهبندی نادرستی است زیرا با وزنهای 2 و 4 داریم 24 = a ولی این حرف مورد نظر ما نیست، چون این مرحله را پیش رفتهایم لازم است که d.1 از W1 و d.2 از W2 کم شود تا ردهبندی نادرستی از B ثابت شود. به هر حال یک ردهبندی از 8 را دوباره بیرون میدهد.بعدها موقع بروز خطا ما وزنها را برای درست کردن خطاهای ردهبندی اصلاح میکنیم. اگر مثالها دارای خاصیت صحیحی باشند وزنها در مجموعهای از مقادیری که به درستی روی هر ورودی کار میکنند قرار میگیرند.
قضیه بنیادی دنبالهها:
یک خصوصیت قابل توجه perceptron این است که آنها میتوانند دنبالهای از رده بندی صحیح مثالهای مثبت ومنفی باشند.فرض کنیم: X = X+ ب X-
X+ : مجموعهای از مثالهای مثبت
X- : مجموعهای از مثالهای منفی
گوییم که رشته بیکران S x= X1 , X2 , …, Xk ,… یک رشته متوالی(ترتیبی) برای X است در صورتی که هر Xi یک
مثال در X است و هر عنصر از X اغلب به طور نامحدود در Sx رخ میدهد(نمایان میشود).
فرض کنیم Wk ضریب وزنی در سطح k دنباله باشد. وزن اولیه میتواند به صورت قراردادی باشد (برای مثال W1=0 ). حال
رشته استاندارد حاصله، وزنها را به صورت زیر ارتقا میدهد:
بسته به استرادژی مورد نظر ممکن است مقادیر C k همگی یکسان باشند یا ممکن است با k تغییر کنند.
قضیه 1):
باشد و یک بردار حل وزنها برای X وجود داشته باشد, در این صورت رویه رشته استاندارد باید بعد از یک تعداد فرض کنیم یک مجموعه از رشته نمونه X و هر رشته ترتیبی برای آن داریم, اگر Ck یک ثابت مثبت مراحل مشخص یک راهحل پیدا
کند به طوری که اگر برای بعضی k0 ها داشته باشیم:
WK0 = WK0+1 = WK0+2 = …
که WK0 یک راهحل برای X است. {7}
الگوریتم ژنتیک :
الگوریتم ژنتیک که بعنوان یکی از روشهای تصادفی بهینه یابی شناخته شده, توسط جان هالند در سال 1967 ابداع شده است. بعدها این روش با تلاشهای گلدبرگ 1989, مکان خویش را یافته و امروزه نیز بواسطه توانایی های خویش , جای مناسبی در میان دیگر روشها دارد. روال بهینه یابی در الگوریتم ژنتیک براساس یک روند تصادفی- هدایت شده استوار می باشد. این روش , بر مبنای نظریه تکامل تدریجی و ایده های بنیادین داروین پایه گذاری شده است.در این روش , ابتدا برای تعدادی ثابت که جمعیت نامیده می شود مجموعه ای از پارامترهای هدف بصورت اتفاقی تولید می شود , پس از اجرای برنامه شبیه ساز عددی را که معرف انحراف معیار و یا برازش آن مجموعه از اطلاعات است را به آن عضو از جمعیت مذکور نسبت می دهیم . این عمل را برای تک تک اعضای ایجاد شده تکرار می کنیم , سپس با فراخوانی عملگرهای الگوریتم ژنتیک از جمله لقاح , جهش و انتخاب نسل بعد را شکل می دهیم و این روال تا ارضای معیار همگرایی ادامه داده خواهد شد. هنگامی که لغت تنازع بقا به کار میرود اغلب بار ارزشی منفی آن به ذهن میآید. شاید همزمان قانون جنگل به ذهن برسد و حکم بقای قویتر! البته برای آنکه خیالتان راحت شود میتوانید فکر کنید که همیشه هم قویترینها برنده نبودهاند. مثلا دایناسورها با وجود جثه عظیم و قویتر بودن در طی روندی کاملا طبیعی بازی بقا و ادامه نسل را واگذار کردند در حالی که موجوداتی بسیار ضعیفتر از آنها حیات خویش را ادامه دادند. ظاهرا طبیعت بهترینها را تنها بر اساس هیکل انتخاب نمیکند! در واقع درستتر آنست که بگوییم طبیعت مناسب ترینها (Fittest) را انتخاب میکند نه بهترینها. قانون انتخاب طبیعی بدین صورت است که تنها گونههایی از یک جمعیت ادامه نسل میدهند که بهترین خصوصیات را داشته باشند و آنهایی که این خصوصیات را نداشته باشند به تدریج و در طی زمان از بین میروند.
بخشی از فهرست مطالب مقاله مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن
الهام از نورون واقعی :
مدل ریاضی نرون :
کاربردها :
تاریخچه :
شبکه عصبی چیست؟
- شبکههای عصبی مصنوعی:
2-1- شبکههای عصبی مصنوعی:
2-2- مشخصات مسائل در خور شبکههای عصبی مصنوعی Network) Artificial Neural
(ANN
2-3- کاربردهای شبکههای عصبی مصنوعی ANN :
انواع یادگیری برای شبکه های عصبی:
1. یادگیری با ناظر:
یادگیری تشدیدی:
یادگیری بدون ناظر:
زمینهای درموردperceptron
قدرت Perceptron:
دنبالههای Perceptron:
الگوریتم ژنتیک چیست؟
شرایط خاتمه الگوریتم های ژنتیک عبارتند از:
ایده اصلی :
الگوریتم :
روش های نمایش :
روش های انتخاب :
تقاط قوت الگوریتم های ژنتیک:
محدودیتهای GAها :
چند نمونه از کاربرد های الگوریتم های ژنتیک :
تغییر از یک نسل به نسل بعدی(Cross over) :
جهش(Mutation) :
الگوریتم ژنتیکی ساده :
معرفی الگوریتم :
محدوده کاربرد الگوریتمهای ژنتیکی :
اصول الگوریتم های ژنتیکی :
یک تکنیک کددار کردن برای حلهای ارائه شده:
حلهای کاندید شده :
مرحله انتخاب:
جهش :
جایگزینی و ادامه:
پیکربندی الگوریتمهای ژنتیکی :
مهمترین پارامترهای پیکربندی الگوریتم ژنتیکی :
الگوریتم ژنتیکی در انتخاب متغیر:
نتیجهگیری کلی (الگوریتم ژنتیک):
الگوریتم مورچگان :
کاربردهای الگوریتم مورچگان :
معرفی شبکه های عصبی مصنوعی:
تعریف شبکه های عصبی مصنوعی :
معرفی مدل نرون ساده خطی:
تکنیکهای تعیین پارامترهای نرون خطی :
شبکه های پرسپترون چند لایه :
الگوریتم یادگیری شبکه های پرسپترون ( انتشار به عقب ):
حال بر اساس مطالب گفته شده الگوریتم یادگیری را شرح میدهیم :
ویژگیهای یک شبکهعصبی:
مجموعهای از واحدهای پردازشی ساده :
● قاعدهای برای انتشار سیگنالها در شبکه:
● قواعدی برای ترکیب سیگنالهای ورودی:
شبکه عصبی چند لایه :
ایده اصلی شبکههای عصبی :
حال ببینیم که ایده اصلی عملکرد این شبکهها چگونه است؟
تشخیص الگوی صدا با استفاده از شبکه عصبی:
روش استفاده شده برای تشخیص:
شباهت با مغز:
روش کار نرونها :
مدل ریاضی :
w نیز به تناسب افزایش مییابند و هر یک به n عدد افزایش مییابند.
پیادهسازیهای الکترونیکی نرونهای مصنوعی :
عملیات شبکههای عصبی - Neural Networks (قسمت دوم):
عملیات شبکههای عصبی:
آموزش شبکههای عصبی:
آموزش unsupervised یا تطبیقی (Adaptive) :
انواع شبکهها از نظر برگشت پذیری :
1. شبکههای پیشخور (Feed Forward) :
یک شبکه عصبی جدید و کاربرد آن:
- شکل شبکه :
4- قانون آموزش شبکه :
5- مدلسازی ژنراتور سنکرون دریایی :
5-1 روش مدلسازی دینامیک :
شبکه های عصبی و الگوریتم های ژنتیک در تجارت(1) :
فناوری شبکه عصبی :
فناوری الگوریتم ژنتیک :
مروری بر کاربردهای تجاری :
بازاریابی :
بانکداری و حوزه های مالی:
سایر حوزه های تجاری :
- نتایج مهم:
معماری شبکه عصبی مصنوعی:
معماری یک لایه :
درختان Hoeffding:
سیستم VFDT :
نتیجه گیری :
منابع :
دانلود با لینک مستقیم
دانلود مقاله مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن