لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل: Word (قابل ویرایش و آماده پرینت)
تعداد صفحه :45
بخشی از متن مقاله
شرح فرآیند
اطلاعات جدید و شرایط متفاوت بطور عملی شرایط زیست محیطی و ایمنی نیاز به روز رسانی فرآیند را بیشتر میکند. بیشتر مبانی طراحی و فرضیات مانند قبل است و در جدول 503 آورده شده است. عامل انتقال زنجیر عامل کنترل کننده جرم مولکولی نیز به جای قتل از ( پارا ترشیاری بیوتیل فنل) با نسبت مولی یکسان استفاده میشود.
جدولی از تجهیزات مورد نیاز در جدول 504 آورده شده است. این جدول سه عضو جدید را نسبت به طراحی های گذشته نشان میدهد. 1- تبخیر کنندة خوراک فسژن
2- واحد تصفیه و خالص سازی مجدد برای پلیمری که از محلول جدا شده است 3- یک تبخیر کنندة ضد حلال برای جدا سازی پلیمرهای با جرم مولکولی پایین.
فرآیند با اختلاط بیس فنل A و پرا ترشیاری فنل بطور نا پیوسته برای کنترل دقیق بر میزان پریدین و متیلن کلراید، شروع میشود. سپس مخلوط حاصل بعد از عبور از یک خنک کننده به داخل راکتورها پمپ میشود. (هفت راکتور همزن دار خنک شونده که بطور سری کار میکنند) فسژن تبخیر میشود سپس متراکم شده و پس از خنک شدن به داخل راکتورهای مختلف خوراک دهی میشود تا بهترین نتیجه حاصل شود.
مقادیر بیشتری از میتلن کلراید در مرحله مشخصی از واکنش برای کنترل ویسکوزیته به راکتور اضافه میشود. به محلول پلیمری حاصل هیدرکلریک اسید اعمال شده سپس در یک جریان متداخل با آب بون زدایی شده در دستگاه سانتریفوژ مایع شسته میشود و سپس محلول صاف میشود. برای اطمینان از درصد پایین مونومزوپلیمرهای با جرم مولکولی پایین، پلیمر بصورت پودر در یک جریان متداخل رسوب گذاری بازیافت میشود. پلیمر با صاف کردن از مرحله دوم رسوب میکند و رسوب فیلتر میشود. لایه تشکیل شده روی فیلتر دوباره با ضد حلال شسته شده و دوباره صاف میشود. لایه جدا سازی شده در مرحله دوم صاف کردن، خشک شده و آلیاژ شده و پس از عبور از الکترو در خرد شده و بسته بندی میشود انتقال دهنده های با هوای خشک، و نگهدارنده های تراشه ها و ایستگاههای کیسه گیری و بسته بندی نیز آماده شده اند.
پریدین با شستشوی محلول با خنثی سازی بوسیلة قلیا که در صد بسیار (کم حلال را خارج میکند) و باز یافت میشود و سپس با رسیدن به نقطه آزئوتروپ محلول آب - پریدن متوقف میشود. محلول آزئوترو با اضافه کردن محلول غلیظ قلیاء تازه شکسته میشود و پریدین جدا میشود. از محلول رقیق قلیا برای خنثی سازی محلول شستشو همانگونه که توضیح داده شد، استفاده میشود. در صد بسیار کم آب باقی مانده و در پریدن به شکل آزئوتروپ 9 از طریق برج خشک کن، جدا میشود و پریدین مجدداً در فرآیند استفاده میشود.
بخشی از متیلن کلراید در مرحله اول جدا شده و پس از خشک کردن در جدا سازی دوباره مورد استفاده قرار میگیرد.
در طراحی های قبلی باقیمانده حلال و ضد حلال بطور مستقیم برای رسوب دادن بیشتر پلیمر، به فرایند بازگردانده میشود. این مایع شامل مقادیری از پلیمرهای با جرم مولکولی پایین و احتمالاً مونومر است و میتواند محصول را آلوده کند. در طراحی های جدید بخش جدا سازی مواد زائد اضافه شده است. اجزاء فرار پلیمرهای با جرم مولکولی پایین با تبخیر توسط بخار آزاد در C -502 جدا میشود. محلول ضد حلال متراکم شده و به داخل جرج خشک کن C -503 سرازیر شده تا در آنجا خشک شود. سپس برای شستشوی مرحله اول لایه جدا شده در فیلتر همانگونه که در بالا توضیح داده شد استفاده شود. مواد آلی از جریان آب بالایی بوسیله دستگاه تصفیه آب C -504 جدا شده و این مواد آبی مجدداً به C -503 برگردانده میشوند.
یک کوره به عنوان مجزاء با نام pac sol میتواند پلیمرهای با جرم کم، ضایعات پلاستیکی و مایعات آبی را مانند سایر ضایعات جامد بسوزاند و به خاکستر تبدیل کند. این دستگاه از یک مشعل استوانه ای دوار است که بعد از آن محفظه ای برای تکمیل فرآیند سوختن وجود دارد. گاز های حاصل از احتراق سرد شده و در یک جذب کننده Ventargi برای جدا کردن ذرات معلق تنظیف شده و سپس با محلول بازی برای جدا کردن گازهای اسیدی مانند هیدروژن کلراید، تماس مییابد.
آبی که قبلاً پس از جدا سازی از پریدین مستقیماً به داخل فاضلاب هدایت میشود اکنون قبل از ورود به فاضلاب با کربن فعال در جذب کننده c -501 تماس پیدا میکند. عمر این جاذب بسیار بالا بوده و نیاز به تعویض آن وجود ندارد
هوایی که از خشک کن M-402 و فیلترهای S-403-4 میآیند، حاوی حلال ضد حلال میباشند و این مواد د جاذب کربن فعال C -506,505 جدا میشوند که این جانب بطور جایگزین کاری میکنند که در زمان غیر فعال بودن توسط بخار آب مجدداً تمیز میشوند.
مواد آلی جدا شده به بخش بازیافت حلال برگردانده میشوند.
خلاصه محصولات زاید در جدول 505 آورده شده است.
جریانهای مواد زاید نشان داده شده آنهایی هستند که در حال کارکرد عادی فرایند اهمیت دارند. علاوه بر مقادیر نشان داده شده نشست مایعات از طریق پمپها و سایر تجهیزات وجود دارد. همچنین نشست بخارات از طریق پر و خالی شدن مخازن و سایر شرایط نیز وجود دارد. مقادیر بیشتری از آب با شستشوی محل فرآیند به فاضلاب اضافه میشود. همچنین مقادیر زیادی تخلیه در اثر اشتباهات کاربری عملکرد شیرهای اطمینان تخلیه و شستشوی تجهیزات در حین توقف های فرآیند، و شرایط مشابه میتواند رخ دهند.
بحث در مورد فرآیند:
دلیل اینکه C _E فسژن را بصورت بخار به داخل فرایند وارد میکند میتواند به خاطر تاثیرات جدی مقادیر بسیار کم فلزات بر کیفیت محصول میباشد.
فسژن خشک خورنده نمیباشد اما آب آنرا به شدت خورنده میکند پس ایجاد شرایط برای جدا سازی مقادیر بسیار کم فلزات، غیر منطقی به نظر میرسد. همچنین انتخاب مواد برای سازه ها با در نظر گرفتن این عامل تصحیح شده است. جلوگیری از این آلودگی میتواند با استفاده از راکتورها و مخازنی که با شیشه پوشش داده شده اند انجام بگیرد. شیشه برای قلیا مناسب نیست و نیکل ( ماده ای که برای مواردی که تماس با قلیا وجود دارد ترجیح داده میشود) هم یکی از نامطلوبترین آلوده کننده ها میباشد. نیکل میتواند برای ساخت برخی از برجهای بازیافت پیریدین استفاده شود. با این وجود بدلیل خوردگی محصولات همراه با فاضلاب خواهند بود.
نیتانیم از دیدگاه تکنیکی میتواند به عنوان یکی از بهترین مواد جایگزین مطرح باشد. اما این ماده گرانقیمت است قیمت صفحات نیتانیم ده دلار برای هر پوند و برای صفحاتی که نیتانیم بر روی فولاد چسبانده شده است شش دلار بر پوند است که کمترین ضخامت فولاد 16/11 اینچ میباشد. اگر فشار طراحی ضخامت را کنترل کند، وزن مخزن نیتانیم تقریباً با وزن مخزن فولادی یکسان میشود. در مدلهای حرارتی لوله های نیتانیم هزینه ای برابر با لوله های نیکلی دارند.
تجهیزاتی که با شیشه روکش شده اند در بیشتر قسمتی این طراحی انتخاب بهتری هستند. با این وجود بوجود آمدن سوراخهای کوچک در این پوشش شیشه میتواند باعث مسأله خوردگی در زمان سرویس دهی بشود، آلودگی ایجاد شده در محصول نهایی در اثر این عامل نباید خیلی جدی باشد. دستگاههای سانتریفوژ مایع معمولاً از فولاد ضد زنگ فسیل داده شده یافته میشوند. تماس کوتاه در این تجهیزات مانعی ندارد. برای نگهداری یونهای فلزی در فاز مایع باید از یک عامل (Chelatia) استفاده کرد در برخی سرویس دهی ها، استفاده از فولاد ضد زنگ علی رقم وجود نیکل در آن به فولاد کربنی ترجیح داده میشود زیرا مقاومت کلی آن در برابر خوردگی بیشتر است. همچنین استفاده از فولاد ضد زنگ میتواند از خوردگی در هنگامیکه تجهیزات خاموش شده و تمیز میشوند، جلوگیری کنند. سازمان FDA در ایالات متحدة آمریکا اخیراً نگرانی بیشتری نسبت به مهاجرت پلیمرهای با وزن مولکولی کم ومونومر به داخل مواد خوراکی در حین تماس با آنها ابرازی میکند. علاوه بر این اجزاء چسبنده در مایعات در گردش میتواند فرآیند را مشکل کند به همین دلیل در این طراحی مایعات تبخیر شده تا پلیمرهای با جرم مولکولی کم جدا شدند و مایعات تقسیم شده و برای جدا سازی موثر مواد رسوب نکرده ای که میتواند پلیمر نهایی را آلوده کند مورد استفاده قرار گیرد. این عمل با شستشوی لایه تشکیل شده روی صافی مرحله اول بوسیله مایعات تمیز تصفیه شده صورت میگیرد.
علاوه بر جدا سازی مونور و مواد با جرم مولکولی پایین، پریدین و هیدرو کلراید آن باید بطور کامل از پلیمر جدا سازی شود، این اجزاء با شستشو با آب جدا میشنود. جداسازی مونومرو پلیمرهای با جرم کم، باعث ایجاد محلول صاف شده ای میشود که باید فرآیند شود. همچنین تبخیر اجزاء فرار باعث میشود که پلیمر به حالت بسیار ویسکوز و شاید چسبنده برسد. در این طراحی بخار برای جلوگیری از بسته شدن سطوح انتقال حرارت استفاده میشود. به هم زدن شدید با استفاده از بخار باعث میشود که الیگومر ها بصورت دوغابی در آب میعان یافته جدا شوند. اگر نیاز باشد میتوان از حلالهای پلیمر با دمای جوش بالا استفاده کرد. اگر گرفتگی در سیستم رخ دهد میتوان با عبور دادن حلال از سیستم این ذرات را تمیز کرد.
طراحی شامل تجهیزاتی برای خشک کردن مواد فرآیند نیز میباشد. امکان دارد بیس فنل A نیاز به خشک کردن داشته باشد.
این ماده برای جلوگیری از خطر انفجار این ماده همراه با گاز خنثی حمل میشود. رطوبت موجود در بین فنل A هر چند موجب جلوگیری از واکنش مطلوب میشود اما میتواند باعث رفتن مقادیری از فسژن شود.
نقش پریدین علاوه بر آنکه یک ماده جذب کنندة ایسه است، حلال بیس فنل A نیز میباشد. متیلن کلراید پلیمر را در خود حل میکند اما موتومردر آن حل نمیشود. این توانایی انحلال پذیری متضاد بیس فنل A و پلیمر از آنجا ناشی میشود که بیس فنل A یک دهنده، پروتن است درحالی که پلیمر حاصل الکترون دهنده میباشد. GE به جای نوکیس پیریدین، از آهک به عنوان جاذب اسید استفاده میکند. به همین دلیل جدا کردن پلیمر از بیس فنل A ساده است. مشخص شده است که حلال کمتر از 2 درصد وزنی ار بیس فنل A را در خود حل میکند. با وجود آنکه جذب اسید توسط آهک واضح نیست اما این روش در صنعت مورد استفاده قرار میگیرد.
برآورد هزینه ها
هزینه های اصلی:
هزینه های بنیادی واحدی که قابلیت تولید 20 میلیون پوند بر سال از پلی کربنات مورد استفاده در فرآیند قالبگیری ترزیق در جدول 5.6 نشان داده شده است. بدلیل تصحیحات زیادی که در اثر اطلاعات جدید و ملاحظات زیست محیطی و ایمنی بوجود میآید، این بر آورد هزینه با برآوردهای قبلی متفاوت است. هزینه اولیه تثبیت شده 10 .8 میلیون دلار است. هزینه کل با در نظر گرفتن هزینه زمین مورد استفاده 16 .7 میلیون دلار میباشد. ( 83 سنت برای هر پوند) ریز هزینه های اصلی بخش فرایند در جدول 5 .4 نشان داده شده است. برآوردهای قابل مقایسه ای منتشر نشده است. GE گزارش کرده است که زمانی که تولید واحد صنعتی Mt.vernon به 150 میلیون پوند بر سال رسید، هزینه کلا پروژه 75 میلیون دلار بود( 50 سنت برای هر پوند) با در نظر گرفتن میانگین هزینه هایی که در مورد پروژه های مختلف به ثبت رسیده و ضریب عملکرد 9.9 میتوان به هزینة سرانة 90 سنت به ازاء هر پوند برای کل هزینه 29 میلیون دلار رسید. اما گزارش در رابطه با صورت هزینه های جزئی فرایند منتشر نشده است.
برخی از گرانترین اجزاء فرآیند در بخش تجهیزات ویژه اصلی قرار دارند عبارتند از دستگاه سانتریفوژ ( 170000 دلار) در بخش تولید پلیمر و اکسترودر ( 277000دلار) در بخش تولید گرانول هزینه های تولید
هزینه های تولید در جدول 5.8 برای کل فرآیند و در جدول 5.9 برای بخشهای فرآیند برآورد شده اند، هزینه کلی 68 سنت به ازاء هر پوند با در نظر گرفتن 10% هزینه افت سرمایه محاسبه شده است اگر میزان 30% را به عنوان بازگشت سرمایه گذاری اولیه به قمیت تمام شده اضافه کنیم به مبلغ 85 سنت به ازاء هر پوند میرسیم.
هزینة سراند تولید به شدت به قیمت مواد اولیه وابسته است ( بطور دقیق تر بیس فنل A )عواملی کلی G,A و فروش و هزینه های تحقیقاتی نیز اهمیت دارند، تغییرات هزینه تولید با ظرفیت واحد و سرعت تولید در شکل 5.1 نشان داده شده است.
6- تولید پلی کربنات با واکنشهای تراکمیبین سطحی:
شیمیواکنش: اطلاعات کمیاز زمان طرح قبلی تولید پلی کربنات به این روش ( سال 1962) منتشر شده است. میزان انحلال پذیری بیس فنل A در محلول هیدروکسید سدیم در محلول حاوی 6 درصد وزنی از هیدروکسید سدیم حداکثر است. انحلال پذیری بیس فنل A با افزایش دما از مقدار 0.15 گرم به ازاء هر گرم هیدروکسید سدیم در دمای صفر درجة سانتی گراد افزایش مییابد. این تفکر مرجع باعث طراحی یک واکنش نا پیوسته دو مرحله ای میشود. مرحله اول شامل فسژنه کردن و مرحله دوم پلیمریزاسیون تراکمیبا وجود اینکه بطور واضح توضیح داده نشده است، اما مرحله دوم شامل اختلاط در حضور کاتالیست بدون افزودن فسژن اضافی انجام میشود. مقدار مصرف کلی پارا- تراشیاری بوتیل فنل به ازاء واحد بیس فنل A کنترل کننده نهایی جرم مولکولی است. فنل با سرعت کمتری نسبت به پاراترشیاری بوتیل فنل واکنش میدهد. کربنات سدیم در اثر هیدرولیز فسژن بوجود میآید واکنش جانبی با اختلاط موثر و با حضور کاتالیست در مرحله فشرنه کردن میتواند کاهش یابد. آزمایشات روند تغییرات جرم مولکولی را بر حسب زمان و افزودن کاتالیست مشخص کرده است.
مروی بر فرآیند:
پتنت های انتشار یافته بعد از طراحی اولیه در جدول 6.1 نشان داده شده است مثالهایی از پلیمریزاسیون تراکمیکه در سطح مشترک انجام میشود، در این گزارش بر حسب نیازهای اساسی این فرآیند جمع آوری شده اند بطور کلی، اختراعات کمیدر زمینه فرایندای صنعتی صورت میگیرد. پتنت M obn/ که ارسال 1976 منتشر شده در سال 1962 برای بار اول به کار برده شد. اهمیت آلودگی های فلزی را در پلیمر حاصل و شستشوی محلول پلیمر با عامل chclting آشکار ساخت. بایر لوله های اختلاط و مخازن نگهدارندة جایگزین را به عنوان سیستم راکتور به کار برد. هدف از این کار کارکرد مداوم سیستم است توزیع زمان اقامت باریک داشته باشد که بتواند با فرآیند ناپیوسته قابل مقایسه باشد.
G .E پتنت های زیادی در فرایندای واکنش بین سطحی منتشر کرده است. روش کلی به این صورت است که در حالت کن ابتدا تا اتمام بیس فنل A در PH بالا و در نهایت تکمیل رشد پلیمر و جدا کردن کلر از پلیمر با همزدن مدام میباشد. این روش ناهمگنی پلیمر را کاهش میدهد. راکتور های ناپیوسته استفاده شده است. Indemitsu در پتنت خود از راکتورهای با جریان یکنواخت برای تولید الیگومرها که از نفاط مختلف فسژن ترزیق میشود و کنترل دما با تبخیر حلال.صورت میگیرد در صد از دست دادن فسژن برابر با 2 تا 3 درصد از مقدار استوکیومتری میباشد. متون تکنیکی اطلاعات بیشتری در مورد فرآیند صنعتی به دست میدهند. در سال 1969 Indemitsu تنها فرآیندی بود که بطور پیوسته کار میکرد. از آن زمان این شرکت فرآیند خود را گسترش داده و اجازة استفاده از این روش را به مسیر بیشی و ANIC داده است شرکتهای دیگری نیز ممکن است از روش پیوسته استفاده کنند. در فرآیند Indemitsu محلول سود سوز آور بطور پیوسته برای حل کردن بیس فنل A به کار میرود. انحلال پیوسته برای این به کار میرود تا غلظت یکنواخت تری را ایجاد کند چون احتمال اکسید شدن محلول وجود دارد. محلول حاصل به همراه فسژن و متیلن کلراید به داخل راکتور پیوسته خورا کدهی میشود. جرم مولکولی الگومر حاصل از این راکتور با اضافه کردن مقدار اضافی از سود سوز آور ، کاتالیست و کنترل کننده جرم مولکولی، افزایش مییابد در این حال اختلاط پیوسته ادامه دارد و بصورت نا پیوسته صورت میگیرد. سپس محلول حاصل در یک برج شستشو شده و در واحدی که Indemitsu آنرا سوپر سانتری فوژ نامیده میشود جدا سازی میشود.
متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.
دانلود فایل
دانلود مقاله کامل درباره پلی کربنات ها