زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پاورپوینت ریاضی پایه سوم انسانی مبحث توابع توانی - 13 اسلاید

اختصاصی از زد فایل دانلود پاورپوینت ریاضی پایه سوم انسانی مبحث توابع توانی - 13 اسلاید دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت ریاضی پایه سوم انسانی مبحث توابع توانی - 13 اسلاید


دانلود پاورپوینت ریاضی پایه سوم انسانی مبحث توابع توانی - 13 اسلاید

 

 

 

در حالت کلی نمودار تابع های توانی با توان فرد به شکل زیر می باشد .

 

فقط با افزایش توان        هر یک از شاخه ها به محور       نزدیک تر می شود

مناسب برای دانش آموزان و دبیران و اولیا

برای دانلود کل پاورپوینت از لینک زیر استفاده کنید:


دانلود با لینک مستقیم


دانلود پاورپوینت ریاضی پایه سوم انسانی مبحث توابع توانی - 13 اسلاید

دانلود مقاله سریهای توانی

اختصاصی از زد فایل دانلود مقاله سریهای توانی دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله سریهای توانی


دانلود مقاله سریهای توانی

یک سری به شکل * که در آن  و.... اعدادی ثابت هستند، یک سری توانی از x  می نامند . معمولاً برای راحتی سری *به صورت  می نویسد در حالت کلی تر سری توانی به صورت است .

اگر به جای x مقدار ثابت r در نظر بگیریم سری توانی  به یک سری عددی تبدیل می شود و همگرایی آن از روشهای همگرایی سری های عددی استفاده می شود .

نکته : هرگاه سری توانی  به ازاء x=r که  همگرا باشد ، آنگاه به ازاء هر x که به طور مطلق همگرا است هرگاه سری به ازاءx=s واگرا باشد آنگاه به ازاء هر x که  نیز واگرا است .

تعریف بازه همگرایی: مجموعه نقاطی که به از‌ ‌آنها سری  همگرا باشد ، همواره یک بازه است که به آن بازه ، بازه همگرایی می گویند.

نکته: سری توانی  یکی از سه رفتار زیر را دارد :

 الف ) سری فقط به ازاءx=0 همگرا است در این صورت بازه همگرایی I بازة [0,0] است

ب ) سری به ازاء هر x همگرا است د راین صورت  است

 ج) سری به ازاء مقادیر ناصفری از x همگرا و به ازاء سایر مقادیر واگراست

 در این صورت،I یک بازه متناهی به شکل (-R,R],[-R,R),[-R,R],(-R,R)که R>0 است و این بسته به رفتار سری در نقاط x=-R ,x=R است که باید جداگانه بررسی شود . بازه همگرایی I ممکن است شامل یک یا هر دو نقطه انتهای نباشد به عبارت دیگر سری ممکن است به ازاءx=R یاx=-R  همگرا باشد یا نباشد .

شعاع همگرایی :عدد R در نکته فوق شعاع همگرایی سری توانی  نام دارد .

مثال : بازه همگرایی و شعاع همگرایی سری های توانی زیر را به دست آورید .

(‌الف

حل : از آزمون نسبت [1] نتیجه می شود که سری فوق به ازاء x=0 همگرا است زیرا :

 

مگر آنکه x=0 لذا R=0,I=[0,0]

حل : آز آزمون ریشه نتیجه می شود که سری به ازاء هر x همگرا است زیرا :

 

حل : معلوم می شود که

شامل 131 صفحه فایل word قابل ویرایش

 


دانلود با لینک مستقیم


دانلود مقاله سریهای توانی