پاورپوینتی زیبا و جذاب منطبق بر مطالب درسی در 50 اسلاید قابل ویرایش
پاورپوینت فصل 4 آمار و مدل سازی ( دسته بندی داده ها و جدول فراوانی )
پاورپوینتی زیبا و جذاب منطبق بر مطالب درسی در 50 اسلاید قابل ویرایش
درس پژوهی ریاضی ششم ابتدایی جمع آوری ونمایش داده ها
تعداد صفحات:27
فرمت فایل:ورد
چکیده
آدمی از آغاز بر آن بوده است که تاریکی های جهان را به نور آگاهی و دانش و اندیشه روشن نماید تا بتواند به افق های دورتر دانایی و دانش اوج بگیرد. در این میان اشتغال به نشر و پژوهش در علوم موهبتی است ایزدی که معلمان را به مراتب عالی الهی می رساند. و باری گران و مسئولیتی عظیم را بردوش این جماعت قرار می دهد. جستار پیش رو، حاصل این عشق و احساس وظیفه ی توأمان است.
درس پژوهی برگردان واژه ژاپنی jugyokenkyu بمعنی مطالعه یا پژوهش تشکیل شده است .kenkyu بمعنی درس و jugyo بمعنای مطالعه یا پژوهش است . معادل انگلیسی درس پژوهی Lesson study است .
درس پژوهی به زبان ساده مطالعه و پژوهش جمعی پیرامون عمل تدریس است . بعنوان یک معلم حرفه ای بیا و در روش تدریس خود تامل کن! حتما روش بهتری برای تدریس وجود دارد . اما این بار نه به تنهایی، بلکه با یک گروه از معلمان هم رشته ، روش خود را مورد مطالعه و آزمون قرار دهید ، با هم با نقد شرایط موجود و در جهت نیل به وضع موجود طرح مساله نمایید ، در جهت شناخت بهترین روش ممکن پژوهش کنید ، نتایج پژوهش را در کلاس درس و بصورت طبیعی بیازمایید ، نتیجه آزمایش را نقد کنید ، طرح را اصلاح و دوباره در یک کلاس دیگر آن را اجرا نمایید ، نتایج پژوهش خود را منتشر و در اختیار دیگران قرار دهید .
به این ترتیب شما گام در مسیر درس پژوهی نهاده اید روشی که پایه توسعه مستمر حرفه ای شماست و شما را در مسیر یک معلم حرفه ای و فکور به حرکت وا می دارد !
در این درس پژوهی سعی بر این است که دانش آموزان به طور کامل با مفاهیم کامل درس آشنا گردند و مشکلات و معایب تدریس در این باره برطرف گردد.
مقدمه :
همانطور که می دانیم درس پژوهی شکل اولیه ای از توسعه ی حرفه ای معلمان می باشد که هدف عمده آن بهبود مستمر تدریس می باشد به گونه ای که دانش آموزان بتوانند مطالب را به شیوه ی موثر تری بیاموزند.گروه درس پژوه تلاش می کند طرح درس خود را نقد و بررسی و به شیوه بهینه اصلاح نماید. طرح درس مشارکتی رمز موفقیت معلمان می باشد. برای معلم درس پژوه تمام کردن کتاب مهم نیست، یادگیری و فهمیدن دانش آموزان مهم است. درس پژوهی به معلمان یاد می دهد که در کلاس صرفا یاددهنده نباشند بلکه یادگیرنده نیز باشند.ملاک سنجش در موفقیت درس پژوهی یادگیری معلمان است نه تولید یک درس. تهیه طرح درس بهتر نتیجه جانبی و ثانوی فرآیند است اما نه هدف اولیه آن.
منطق درس پژوهی ساده است اگر میخواهید آموزش را بهبود بخشید، اثر بخشترین جا برای چنین کاری، کلاس درس است. اگر شما این کار را با درسها شروع کنید، مسئلهی چگونگی کاربرد نتایج تحقیق در کلاس درس ناپدید می شود.در اینجا بهبود کلاس درس در درجهی اول اهمیت است. درس پژوهی یکی از راههای ارتقا و دستیابی به شیوه های نوین تدریس و کنار گذاشتن شیوه ها و روشهای سنتی است . معلمین مقطع ابتدایی چند سالی است که تلاش می کنند تا بلکه بتوانند با شرکت درجشنواره ی الگوهای نوین تدریس خدمتی در این راستا به نظام تعلم و تربیت کشور به عنوان مهمترین رکن آینده ساز کشور کمکی کرده باشند .
ما در قسمت مبانی علمی و نظری به سه مبحث پرداخته ایم : اول ، طراحی منظم آموزشی یا همان طرح درس ، دوم ؛روشهای تدریس ، سوم ؛هدفهای سه گانه ی تعلیم وتربیت .
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه39
بخشی از فهرست مطالب
فصل 1 مقدمه.................................... 9
فصل 2 مفاهیم داده کاوی........................ 12
فصل 3 کاربرد های داده کاوی.................... 28
فهرست مطالب
فصل 4 مثال تفهیمی در مورد داده کاوی........... 38 مثال تفهیمی در مورد داده کاوی................................ 39
فهرست اشکال
شکل 2.1 فنون داده کاوی....................... 22
شکل 2.2 نمونه ای از یک درخت تصمیم............ 24
شکل 2.3 طبقه بندی در داده کاوی............... 27
شکل 3.1 داده کاوی در مدیریت ارتباط با مشتری.. 34
فهرست جداول
جدول 3.1 کاربردهای داده کاوی درکتابخانه ها.... 31
فصل اول
مقدمه
1.1 مقدمه :
درطول دهه گذشته باپیشرفت روزافزون کاربرد پایگاه داده ها،حجم داده های ثبت شده به طور متوسط هر5سال 2برابرمی شود. دراین میان سازمان هایی موفقند که بتوانند حداقل 7٪داده هایشان راتحلیل کنند. تحقیقات انجام یافته نشان داده است که سازمانها کمترازیک درصد داده هایشان رابرای تحلیل استفاده می کنند.
به عبارت دیگردرحالی که غرق درداده ها هستند تشنه دانش می باشند.
بنابراعلام دانشگاه MIT دانش نوین داده کاوی (Data mining) یکی ازده دانش درحال توسعه ای است که دهه آینده راباانقلاب تکنولوژی مواجه می سازد.این تکنولوژی امروزه دارای کاربرد بسیاروسیعی درحوزه های مختلف است به گونه ای که امروزه حدومرزی برای کاربرد این دانش درنظرنگرفته وزمینه های کاری این دانش راازذرات کف اقیانوس ها تااعماق فضامی دانند.
امروزه بیشترین کاربرد داده کاوی دربانکها، مراکزصنعتی وکارخانجات بزرگ، مراکزدرمانی وبیمارستانها ،مراکز تحقیقاتی ،بازاریابی هوشمند وبسیاری ازموارددیگرمی باشد.
داده کاوی پل ارتباطی میان علم وآمار،علم کامپیوتر، هوش مصنوعی ،الگو شناسی،فراگیری ماشین وبازنمایی بصری داده می باشد.داده کاوی فرآیندی پیچیده جهت شناسایی الگوها ومدل های صحیح، جدید وبه صورت بالقوه مفید، درحجم وسیعی ازداده می باشد، به طریقی که این الگوها ومدلها برای انسانها قابل درک باشد.داده کاوی به صورت یک محصول قابل خریداری نمی باشد،بلکه یک رشته علمی وفرآیندی است که بایستی به صورت یک پروژه پیاده سازی شود.
کاوش داده ها به معنی کنکاش داده های موجود درپایگاه داده وانجام تحلیل های مختلف برروی آن به منظوراستخراج اطلاعات می باشد.
داده کاوی فرآیندی تحلیلی است که برای کاوش داده ها( معمولاً حجم عظیمی ازداده ها) صورت می گیرد ویافته هابا به کارگیری الگوهایی ،احرازاعتبارمی شوند.هدف اصلی داده کاوی پیش بینی است.وبه صورت دقیق ترمی توان گفت:
" کاوش داده ها شناسایی الگوهای صحیح ،بدیع، سودمند وقابل درک ازداده های موجود دریک پایگاه داده است که بااستفاده ازپردازش های معمول قابل دستیابی نیستند."
فصل دوم
مفاهیم داده کاوی
2.1 فرایند داده کاوی
فرآیند داده کاوی شامل سه مرحله می باشد:
1- کاوش اولیه
2- ساخت مدل یاشناسایی الگو باکمک احرازاعتبار/ تایید
3- بهره برداری
مرحله 1: کاوش
معمولاً این مرحله باآماده سازی داده ها صورت می گیرد که ممکن است شامل پاک سازی داده ها، تبدیل داده ها وانتخاب زیرمجموعه هایی ازرکوردها با حجم عظیمی ازمتغییرها( فیلدها) باشد.
سپس باتوجه به ماهیت مساله تحلیلی، این مرحله به مدل های پیش بینی ساده یا مدل های آماری وگرافیکی برای شناسایی متغییرهای مورد نظروتعیین پیچیدگی مدل ها برای استفاده درمرحله بعدی نیازدارد.
مرحله 2: ساخت واحرازاعتبارمدل
این مرحله به بررسی مدل های مختلف وگزینش بهترین مدل باتوجه به کارایی پیش بینی آن می پردازد.شاید این مرحله ساده به نظربرسد.اما این طورنیست.تکنیک های متعددی برای رسیدن به این هدف توسعه یافتند.و" ارزیابی رقابتی مدل ها" نام گرفتند. بدین منظورمدل های مختلف برای مجموعه داده های یکسان به کارمی روند تاکارایی شان باهم مقاسیه شود. سپس مدلی که بهترین کارایی راداشته باشد انتخاب می شود. این تکنیک ها عبارتندازStacking، Boosting،Bagging و Meta- Learning
مرحله 3: بهره برداری
آخرین مرحله مدلی راکه درمرحله قبل انتخاب شده است، درداده های جدید به کارمی گیرد تا پیش بینی های خروجی های موردانتظار راتولیدنماید.داده کاوی به عنوان ابزارمدیریت اطلاعات برای تصمیم گیری، عمومیت یافته است. اخیراً توسعه تکنیک های تحلیلی جدید دراین زمینه مورد توجه قرارگرفته است.(مثلاً Classification Tree) اما هنوزداده کاوی مبتنی براصول آماری نظیر(EDA: Exploratory Data Analysis)می باشد.
بااین وجود تفاوت عمده ای بین داده کاوی وEDA وجود دارد. داده کاوی بیشتربه برنامه های کاربردی گرایش داردتا ماهیت اصلی پدیده، به عبارتی داده کاوی کمترباشناسایی روابط بین متغییرها سروکاردارد.
2.2 دو مفهوم اساسی در داده کاوی
Bagging:
این مفهوم برای ترکیب رده بندی های پیش بینی شده ازچند مدل به کارمی رود.فرض کنید که قصددارید مدلی برای رده بندی پیش بینی بسازید ومجموعه داده ها مورد نظرتان کوچک است.شمامی توانید نمونه هایی (باجایگزینی ) راازمجموعه داده ها انتخاب وبرای نمونه های اصلی ازدرخت رده بندی استفاده نمایید.به طورکلی برای نمونه های مختلف به درخت های متفاوتی خواهیدرسید.سپس برای پیش بینی باکمک درخت های متفاوت به دست آمده ازنمونه ها یک رای گیری ساده انجام دهید.رده بندی نهایی رده بندی ای خواهدبود که درخت های مختلف آن راپیش بینی کرده اند.
Boosting:
این مفهوم برای تولید مدل های چند گانه (برای پیش بینی یارده بندی ) به کارمی رود.Boosting ترکیبی از classifierها راتولید خواهدکرد.
2.3 اساس داده کاوی
اساس داده کاوی برمبنای سه فعالیت اصلی ذیلاً به آنها اشاره می شود:
1- هدف داده کاوی: داده های بی ارزش وعوامل بیرونی حذف می شوند.
2- فشرده سازی دادها : این عمل به وسیله کد گذاری داده ها صورت می گیرد.
3- کشف الگوها: الگوهای موجود درپایگاه داده ها ازقبیل طبقه بندی ،الگوهای زنجیری و..... کشف می شوند.
انتخاب یک سیستم داده کاوی
سیستم های داده کاوی درروش وعملکرد متفاوتند وحتی ممکن است باانواع کاملا متفاوتی ازمجموعه داده ها مطابق باشند.برای انتخاب یک سیستم داده کاوی باید شرایط زیردرنظرگرفته شوند:
تکنیک های داده کاوی نتیجه ی تحقیقات گسترده وبلندمدتی است که درطول سالها برای افزایش بازدهی تجاری موسسات بکاربرده می شدند.تحقیقات دراین زمینه اززمانی آغازشدکه برای نخستین باراطلاعات تجاری هرسازمان،برروی سیستم های ذخیره سازی آن زمان که ازنوع مغناطیسی بودند،ذخیره شدند. این رشته تحقیقات باتوسعه وپیشرفت سیستم های اطلاعات که قابلیت ذخیره حجم بیشتری ازداده ها رافراهم می کردندوهمچنین ازسرعت بسیاربالاتری درذخیره سازی وبازیابی اطلاعات برخورداربودند، اهمیت بیشتری یافت. روش های دسترسی تصادفی یارندم به اطلاعات وپیدایش روشهای حرکت درمیان داده ها،خصوصاً به صورت بلادرنگ، فناوری داده کاوی رامتحول ساخت.
روش های داده کاوی برپایه های زیر استوار هستند:
توصیف وکمک به پیش بینی دوکارکرد اصلی داده کاوی هستند.تحلیل داده مربوط به مشخصه های انتخابی متغییرها؛ ازگذشته وحال،ودرک الگوهای مثالی ازتحلیل توصیفی است.برآورد ارزش آینده یک متغییر وطرح ریزی کردن روندمثالی پیشگویانه داده کاوی است.
برای عملی شدن هریک ازدوکارکرد فوق الذکرداده کاوی، چند گام ابتدایی اما مهم باید اجراشوند که ازاین قرارند:
کدگذ
مقدمه
از هنگامی که رایانه در تحلیل و ذخیره سازی داده ها بکار رفت (1950) پس از حدود 20 سال، حجم داده ها در پایگاه داده ها دو برابر شد. ولی پس از گذشت دو دهه و همزمان با پیشرفت فن آوری اطلاعات(IT) هر دو سال یکبار حجم داده ها، دو برابر شده و همچنین تعداد پایگاه داده ها با سرعت بیشتری رشد نمود. این در حالی است که تعداد متخصصین تحلیل داده ها با این سرعت رشد نکرد. حتی اگر چنین امری اتفاق می افتاد، بسیاری از پایگاه داده ها چنان گسترش یافتهاند که شامل چندصد میلیون یا چندصد میلیارد رکورد ثبت شده هستند.امکان تحلیل و استخراج اطلاعات با روش های معمول آماری از دل انبوه داده ها مستلزم چند روز کار با رایانه های موجود است.[3]
حال با وجود سیستم های یکپارچه اطلاعاتی، سیستم های یکپارچه بانکی و تجارت الکترونیک، لحظه به لحظه به حجم داده ها در پایگاه داده های مربوط اضافه شده و باعث به وجود آمدن انبارهای عظیمی از داده ها شده است.
این واقعیت، ضرورت کشف و استخراج سریع و دقیق دانش از این پایگاه داده ها را بیش از پیش نمایان کرده است، چنان که در عصر حاضر گفته می شود اطلاعات طلاست.
هم اکنون در هر کشور، سازمان، شرکت و غیره برای امور بازرگانی، پرسنلی، آموزشی، آماری و غیره پایگاه داده ها ایجاد یا خریداری شده است. به طوری که این پایگاه داده ها برای مدیران، برنامه ریزان، پژوهشگران جهت، تصمیم گیری های راهبردی، تهیه گزارش های مختلف، توصیف وضعیت جاری خود و سایر اهداف می تواند مفید باشد. بسیاری از این داده ها از نرم افزارهای تجاری، مثل کاربردهای مالی، ERPها، CRMها و web log ها، می آیند. نتیجه این جمع آوری داده ها این میشود که در سازمانها، داده ها غنی ولی دانش ضعیف، است. جمع آوری داده ها، بسیار انبوه میشود و بسرعت اندازه آن افزایش می یابد و استفاده عملی از داده ها را محدود می سازد.[2]
دادهکاوی استخراج و تحلیل مقدار زیادی داده بمنظور کشف قوانین و الگوهای معنی دار در آنهاست. هدف اصلی داده کاوی، استخراج الگوهایی از داده ها، افزایش ارزش اصلی آنها و انتقال داده ها بصورت دانش است.
دادهکاوی، بهمراه OLAP، گزارشگری تشکیلات اقتصادی(Enterprise reporting) و ETL، یک عضو کلیدی در خانواده محصول Business Intelligence(BI)، است.[2]
حوزههای مختلفی وجود دارد که در آنها حجم بسیاری از داده در پایگاهدادههای متمرکز یا توزیع شده ذخیره میشود. برخی از آنها به قرار زیر هستند: [6]
• کتابخانه دیجیتال: یک مجموعه سازماندهی شده از اطلاعات دیجیتال که بصورت متن در پایگاهدادههای بزرگی ذخیره می شوند.
• آرشیو تصویر: شامل پایگاهداده بزرگی از تصاویر به شکل خام یا فشرده.
• اطلاعات زیستی: بدن هر انسانی از 50 تا 100 هزار نوع ژن یا پروتئین مختلف ساخته شده است. اطلاعات زیستی شامل تحلیل و تفسیر این حجم عظیم داده ذخیره شده در پایگاهداده بزرگی از ژنهاست.
• تصاویر پزشکی: روزانه حجم وسیعی از دادههای پزشکی به شکل تصاویر دیجیتال تولید میشوند، مانند EKG، MRI، ACT، SCAN و غیره. اینها در پایگاهدادههای بزرگی در سیستمهای مدیریت پزشکی ذخیره می شوند.
• مراقبتهای پزشکی: بجز اطلاعات بالا، یکسری اطلاعات پزشکی دیگری نیز روزانه ذخیره میشود مانند سوابق پزشکی بیماران، اطلاعات بیمه درمانی، اطلاعات بیماران خاص و غیره.
• اطلاعات مالی و سرمایهگذاری: این اطلاعات دامنه بزرگی از دادهها هستند که برای دادهکاوی بسیار مطلوب میباشند. از این قبیل دادهها میتوان از دادههای مربوط به سهام، امور بانکی، اطلاعات وامها، کارتهای اعتباری، اطلاعات کارتهای ATM، و کشف کلاهبرداریها می باشد.
• ساخت و تولید: حجم زیادی از این دادهها روزانه به اشکال مختلفی در کارخانهها تولید میشود. ذخیره و دسترسی کارا به این دادهها و تحلیل آنها برای صنعت تولید بسیار بااهمیت است.
• کسب و کار و بازاریابی: داده لازم است برای پیشبینی فروش، طراحی کسب و کار، رفتار بازرایابی، و غیره.
• شبکه راهدور: انواع مختلفی از دادهها در این صنعت تولید و ذخیره می شوند. آنها برای تحلیل الگوهای مکالمات، دنبال کردن تماسها، مدیریت شبکه، کنترل تراکم، کنترل خطا و غیره، استفاده میشوند.
• حوزه علوم: این حوزه شامل مشاهدات نجومی، داده زیستی، داده ژنومیک، و غیره است.
• WWW: یک حجم وسیع از انواع مختلف داده که در هر جایی از اینترنت پخش شدهاند.
در بیشتر این حوزهها، تحلیل دادهها یک روال دستی بود. یک تحلیلگر کسی بود که با دادهها بسیار آشنا بود و با کمک روشهای آماری، خلاصههایی تهیه و گزارشاتی را تولید میکرد. در یک حالت پیشرفتهتر، از یک پردازنده پیچیده پرسش استفاده میشد. اما این روشها با افزایش حجم دادهها کاملا بلااستفاده شدند.
واژه های «دادهکاوی» و «کشف دانش در پایگاه داده» اغلب به صورت مترادف یکدیگر مورد استفاده قرار می گیرند. کشف دانش به عنوان یک فرآیند در شکل1 نشان داده شده است.
کشف دانش در پایگاه داده فرایند شناسایی درست، ساده، مفید، و نهایتا الگوها و مدلهای قابل فهم در داده ها میباشد. دادهکاوی، مرحلهای از فرایند کشف دانش میباشد و شامل الگوریتمهای مخصوص دادهکاوی است، بطوریکه، تحت محدودیتهای مؤثر محاسباتی قابل قبول، الگوها و یا مدلها را در داده کشف می کند[3]. به بیان سادهتر، دادهکاوی به فرایند استخراج دانش ناشناخته، درست، و بالقوه مفید از داده اطلاق میشود. تعریف دیگر اینست که، دادهکاوی گونهای از تکنیکها برای شناسایی اطلاعات و یا دانش تصمیمگیری از قطعات داده میباشد، به نحوی که با استخراج آنها، در حوزههای تصمیمگیری، پیش بینی، پیشگویی، و تخمین مورد استفاده قرار گیرند. دادهها اغلب حجیم، اما بدون ارزش میباشند، داده به تنهایی قابل استفاده نیست، بلکه دانش نهفته در داده ها قابل استفاده می باشد. به این دلیل اغلب به داده کاوی، تحلیل داده ای ثانویه گفته میشود.
شکل1: دادهکاوی به عنوان یک مرحله از فرآیند کشف دانش
استخراج دانش در پایگاهداده (KDD)، بعنوان روالی برای شناسایی الگوهای معتبر، جدید، بالقوه مفید، و سرانجام قابل فهم در دادهها، تعریف شده است. روال سراسری شامل تبدیل داده سطح-پایین به دانش سطح-بالاست. روال KDD در شکل 1 بطور خلاصه نشان داده شده است. این روال یک روال تعاملی و تکراری است که شامل مراحل زیر میباشد:[6]
1- درک دامنه کاربرد: این شامل دانش قبلی مرتبط و اهداف کاربرد است.
2- استخراج مجموعه داده هدف: این چیزی نست جز انتخاب یک مجموعه داده یا یک زیرمجموعه از متغیرها، با استفاده از تکنیکهای رتبهبندی و انتخاب است.
3- پیش پردازش داده: این مرحله برای افزایش کیفیت داده بکار گرفته شده برای دادهکاوی، لازم است. همچنین برای بهبود کارایی کاوش داده لازم است. پیش پردازش داده شامل پاکسازی داده، انتقال داده، یکپارچه سازی داده، کاهش یا فشردهسازی داده برای نمایش فشرده، و غیره است.
4- دادهکاوی: این مرحله شمل اعمال یکی از الگوریتمهای دادهکاوی است.
5- تفسیر: شامل تفسیر الگوهای استخراج شده، و تا حد امکان، بصری سازی این الگوهاست. بصری سازی یک کمککننده مهم در قابل فهم سازی الگوهاست.
6- استفاده از دانش استخراج شده: این مرحله شامل تلفیق این دانش با کارایی سیستم و گرفتن تصمیمات عملی براساس این دانش است.
بیشتر تکنیکهای دادهکاوی حداقل به عنوان الگوریتمهای آکادمیک از سالها یا دهه های قبل وجود داشته اند. تنها در دهه اخیر است که دادهکاوی تجاری نقش عمده ای را بازی کرده است.
چرا امروزه ما به دادهکاوی گرایش داریم؟ در زیر تعدادی از دلایل آن آورده شده:[2]
1. مقدار زیاد داده در دسترس: در دهه اخیر، قیمت سخت افزار بویژه فضای دیسک سخت، بسیار کاهش یافته است. و به دنبال آن، تشکیلات اقتصادی مقدار زیادی از داده ها را از کاربردهای زیادی گردآوری کرد. با این انفجار داده ها، تشکیلات اقتصادی می خواهند که الگوهای پنهان در این داده ها را برای هدایت استراتژی های تجارت خود بکار گیرند. دادهکاوی هنگامی بیشترین معنی را پیدا می کند که داده های زیادی وجود داشته باشد. اغلب الگوریتم های دادهکاوی نیازمند میزان زیادی از داده ها هستند تا مدلهایی را ترتیب دهند که بعداً برای دسته بندی، تخمین، پیش بینی یا سایر کارکردهای دادهکاوی مورد استفاده قرار گیرند.
2. افزایش رقابت: رقابت بعلت وجود بازارهای مدرن و کانالهای توزیع مثل اینترنت و ارتباطات راه دور، بطور فزاینده ای در حال افزایش است. تشکیلات اقتصادی با رقابتهای جهان وب مواجه اند و کلید موفقیت در تجارت، حفظ مشتریان کنونی و بدست آوردن مشتریان جدید است. داده کاوی، تکنولوژی هایی دارد که اجازه می دهد که تشکیلات تجاری فاکتورهایی را برای مواجه با این زمینه ها تحلیل کند.
3. آماده بودن تکنولوژی آن: دادهکاوی قبلا فقط در حوزه آکادمیک قرار داشت، اما در حال حاضر بسیاری از این تکنولوژی ها کامل شده اند و برای اعمال در صنعت آماده اند. الگوریتم ها، بسیار دقیق تر و کاراتر شده اند و می توانند بطور فزاینده ای داده های پیچیده را مدیریت کنند. بعلاوه رابط برنامه نویسی کاربردهای داده کاوی(APIها)، اکنون استاندارد شده اند، که به توسعه دهندگان این امکان را می دهند که کاربردهای دادهکاوی بهتری بسازند.
4. علاقه به مدیریت روابط با مشتریان فراوان است: در طیف وسیعی از صنایع، شرکتها به این بینش رسیده اند که مشتریان برای سازمان حیاتی هستند. و اطلاعات درباره آن مشتریها یکی از دارایی های اساسی سازمان می باشد. اطلاعاتی که شرکتها درباره مشتریانشان دارند نه تنها برای خودشان بلکه برای دیگران هم ارزشمند است. اطلاعات یک محصول است. یک شرکت کارت اعتباری چیزهایی می داند که شرکتهای خطوط هوایی دوست دارند بدانند یعنی چه کسی بلیطهای پرواز متعددی می خرد. گوگل می داند مردم در وب دنبال چه چیزی هستند و از این شناخت با فروش لینکهایی با پشتیبان مالی بهره میبرد. در واقع هر شرکتی که داده های با ارزش جمع آوری می کند در موقعیت یک واسطه اطلاعات قرار دارد.
فهرست
مقدمه 4
عناصر داده کاوی 10
پردازش تحلیلی پیوسته: 11
قوانین وابستگی: 12
شبکه های عصبی : 12
الگوریتم ژنتیکی: 12
نرم افزار 13
کاربردهای داده کاوی 13
داده کاوی و کاربرد آن در کسب و کار هوشمند بانک 15
داده کاوی درمدیریت ارتباط بامشتری 16
کاربردهای داده کاوی در کتابخانه ها و محیط های دانشگاهی 17
مدیریت موسسات دانشگاهی 19
داده کاوی آماری و مدیریت بهینه وب سایت ها 21
داده کاوی در مقابل پایگاه داده Data Mining vs database 22
ابزارهای تجاری داده کاوی 23
منابع اطلاعاتی مورد استفاده 24
انبار داده 24
مسائل کسب و کار برای دادهکاوی 26
چرخه تعالی داده کاوی چیست؟ 27
متدلوژی دادهکاوی و بهترین تمرینهای آن 31
یادگیری چیزهایی که درست نیستند 32
الگوهایی که ممکن است هیچ قانون اصولی را ارائه نکنند 33
چیدمان مدل ممکن است بازتاب دهنده جمعیت وابسته نباشد 34
ممکن است داده در سطح اشتباهی از جزئیات باشد 35
یادگیری چیزهایی که درست ولی بلااستفادهاند 37
مدلها، پروفایلسازی، و پیشبینی 38
پیش بینی 41
متدلوژی 42
مرحله 1: تبدیل مسئله کسب و کار به مسئله دادهکاوی 43
مرحله 2: انتخاب داده مناسب 45
مرحله سوم: پیش به سوی شناخت داده 48
مرحله چهارم: ساختن یک مجموعه مدل 49
مرحله پنجم: تثبیت مسئله با دادهها 52
مرحله ششم: تبدیل داده برای آوردن اطلاعات به سطح 54
مرحله هفتم: ساختن مدلها 56
مرحله هشتم: ارزیابی مدل ها 57
مرحله نهم: استقرار مدل ها 61
مرحله 10: ارزیابی نتایج 61
مرحله یازدهم: شروع دوباره 61
وظایف دادهکاوی 62
1- دستهبندی 62
2- خوشهبندی 62
3- تخمین 63
4- وابستگی 65
5- رگرسیون 66
6- پیشگویی 67
7- تحلیل توالی 67
8- تحلیل انحراف 68
9- نمایهسازی 69
منابع 70
شامل 70 صفحه Word