زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق در مورد اثر برداخت یارانه به کود شیمیایی را در مصرف غیر بهینه این نهاده و تخریب محیط زیست

اختصاصی از زد فایل تحقیق در مورد اثر برداخت یارانه به کود شیمیایی را در مصرف غیر بهینه این نهاده و تخریب محیط زیست دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد اثر برداخت یارانه به کود شیمیایی را در مصرف غیر بهینه این نهاده و تخریب محیط زیست


تحقیق در مورد اثر برداخت یارانه به کود شیمیایی را در مصرف غیر بهینه این نهاده و تخریب محیط زیست

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه25

 

فهرست مطالب

  بررسی مشکلات و معضلات کودهای شیمیایی : مواد و روشها شرایط عمومی مرحله اول برای حداکثر سازی سود به صورت زیر است:                                                                                                          Py.MPxn=Pn

          جدول 2.مقادیر مصرف واقعی و بهینه کود

مقدمه

       یکی از مهمترین رسالتهای بشر در هزاره جدید بسیج اندیشه ها و توانمندیهای اجرایی برای حفاظت از محیط زیست است.در گوشه و کنار جهان هزاران کارشناس و محقق دست به کار شده اند تا ضمن مطلع کردن جوامع بشری و دولتمردان و سیاستگذاران اقتصادی و اجتماعی از مخاطرات بیش روی محیط زیست به راهکارهایی برای صیانت از این میراث مشترک دست یابند.

از میان بخش های مختلف تولیدی بخش کشاورزی بیشترین و نزدیکترین ارتباط را با محیط زیست دارد.این ارتباط یک رابطه متقابل و دو سویه است.از یک طرف فرسایش و تخریب محیط زیست تولید و عملکرد محصولات کشاورزی را تحت تاثیر منفی قرار میدهد و از جانب دیگر مواد آلاینده بخش کشاورزی و مصرف بی رویه کودها و سایر موارد شیمیایی در این بخش صدمات جبران نابذیری به محیط زیست وارد می کند.خطرناکترین موقعیت زمانی است که این ارتباط به شکل یک دور باطل در می آید به این صورت که با تخریب محیط زیست و فرسایش خاک کشاورزان مجبورند جنگلها و منابع طبیعی بیشتری را به کشتزار تبدیل نمایندو سطح مصرف کودهای شیمیایی را افزایش دهند.در واقع این فعالیتهای جدید موجب تخریب بیشتر محیط زیست میگردد و به همین ترتیب دوری باطل ایجاد می شود که نتیجه آن چیزی جز نابودی محیط زیست و فقیرتر شدن کشاورزان نیست.(بای بوردی و ملکوتی 1379)

 

مقاله حاضر با درک این خطر می کوشد اثر برداخت یارانه به کود شیمیایی را در مصرف غیر بهینه این نهاده و تخریب محیط زیست بررسی کند.برداخت یارانه به نهاده های کشاورزی یک سیاست مرسوم در اکثر کشورهای جهان و بخصوص در کشورهای در حال توسعه است.در واقع هدف اصلی از این کار ترویج و ارتقاع نقش نهاده هایی مانند کودهای شیمیایی است که می تواند عملکرد محصولات زراعی را افزایش


دانلود با لینک مستقیم


تحقیق در مورد اثر برداخت یارانه به کود شیمیایی را در مصرف غیر بهینه این نهاده و تخریب محیط زیست

مقاله بهینه سازی منبع با استفاده از شبیه سازی ترکیب یافته و الگوریتم ژنتیک

اختصاصی از زد فایل مقاله بهینه سازی منبع با استفاده از شبیه سازی ترکیب یافته و الگوریتم ژنتیک دانلود با لینک مستقیم و پر سرعت .

مقاله بهینه سازی منبع با استفاده از شبیه سازی ترکیب یافته و الگوریتم ژنتیک


مقاله بهینه سازی منبع با استفاده از شبیه سازی ترکیب یافته و الگوریتم ژنتیک

فرمت فایل : word(قابل ویرایش)تعداد صفحات27

 

خلاصه
این مقاله، توسط ترکیب کردن فلوچارت ( نمودار گردش کار) براساس ابراز شبیه سازی با یک روش بهینه سازی ژنتیک قدرتمند، یک روش را برای بهینه سازی منبع نشان می دهد.روش ارائه شده، کمترین هزینه،و بیشترین بازده را ارائه میدهد، وبالاترین نسبت سودمندی را در عملکردهای ساخت و تولید فراهم می آورد. به منظور یکپارچگی بیشتر بهینه سازی منبع در طرح ریزی های ساخت،مدلهای شبیه سازی بهینه یافته (GA) الگوریتم های ژنتیکی گوناگون،عموماً با نرم افزارهای مدیریت پروژه بکار رفته شده ادغام می شوند. بنابراین، این مدلها از طریق نرم افزار زمان بندی فعال می شوند و طرح را بهینه می سازند.نتیجه، یک ساختار کاری تقلیل یافته سلسله مراتبی در رابطه با مدلهای همانندی سازی بهینه یافته GA است. آزمایشات گوناگون بهینه سازی با یک سیستم در دو مورد مطالعه، توانایی آن را برای بهینه ساختن منابع در محدوده محدودیتهای واقعی مدلهای همانند سازی آشکار کرد. این الگو برای کاربرد بسیارآسان است و می تواند در پروژه های بزرگ بکار رود. براساس این تحقیق، همانندسازی کامپیوتر وا لگوریتمهای ژنتیک ،می توانند یک ترکیب موثر برای بهبود دادن بازده و صرفه جویی در زمان وساخت و هزینه ها باشند.


دانلود با لینک مستقیم


مقاله بهینه سازی منبع با استفاده از شبیه سازی ترکیب یافته و الگوریتم ژنتیک

دانلودمقاله بهینه سازی پیوسته الگوریتم سیمپلکس

اختصاصی از زد فایل دانلودمقاله بهینه سازی پیوسته الگوریتم سیمپلکس دانلود با لینک مستقیم و پر سرعت .

بهینه سازی پیوسته الگوریتم سیمپلکس برای مسائل برنامه ریزی کسری تکه ای – خطی

 


تعمیم های روش شناخته شده سیمپلکس برای برنامه ریزی خطی در دسترس می باشد . که این روش برای حل مسائل مربوط به برنامه ریزی تکه ای خطی و برنامه ریزی کسری خطی به کار می رود. در این مقاله از روش سیمپلکس برای برنامه های خطی ، برنامه های تکه ای – خطی و برنامه های کسری خطی استفاده می کنیم . نتایج محاسباتی ارائه شده بیشتر بر اساس دیدگاه هایی است که عملکرد الگاریتم در مسائل آزمون تصادفی به دست می آید.
واژه های کلیدی : برنامه ریزی کسری ، روش سیمپلکس ، توابع خطی تکه ای
1- مقدمه
برنامه کسری خطی – تکه ای (plfp) می تواند تعریف شود به صورت
= برای به حداقل رساندن
Ax=b مشروط به اینکه

در اینجا (xj) fi یک تابع محدب خطی – تکه ای پیوسته و ( ) یک تابع معقر خطی تکه ای پیوسته است بطوریکه برای هر راه حل موجه ( ) X= می باشد .
A یک ماتریس m×n از مرتبه سطری کامل ، b یک بردار m بطوریکه bi≥ و =U یک بردار- X می باشد . مسائل شناخته شده برنامه ریزی خطی و مسائل برنامه ریزی خطی – تکه ای (PFP) و مسائل برنامه ریزی کسری خطی (LFP) همگی موارد ویژه ای از PLFP می باشند . فوریور تعمیم توسعه یافته مدل سیمپلکس را در برنامه ریزی خطی برای حل PLP و اسوارپ و ماتریس سیمپلکس مطرح شده را برای گسترش در حل LFP ارائه می دهند . در این مقاله ما به بحث و بررسی روش سیمپلکس برای حل PLFP و تعمیم و استفاده از روش سیمپلکس برای LP ، PLP ، LFP می پردازیم زمانیکه ، x و....و است plfp به plp تقلیل یافته و در این مورد الگاریتم ما به شکل الگاریتم فوریور کاهش می یابد . اگر x ... وj=1 و و به شکل خطی باشد (مثلا ً تکه ای – خطی با دقیقا ً یک تکه خطی ) سپس plfp به lfp و الگاریتم ما به الگاریتم اسوارپ و ماتریس کاهش یافته و تعدیل شده به صورت متغییرهایی گسترش می یابند . زمانی که خطی برای و وx و.... وj=1 باشد برای x و ...و j=1 ، plfp به lp با متغییرهای گوشه دار کاهش یافته و الگاریتم ما به روش سیپلکس معیار با متغییرهای گوشه دار تقلیل می یابد . این الگاریتم ما چارچوب واحدی برای حل مسائل بهینگی عمده فراهم نموده که در این مقاله به خوبی مورد مطالعه قرار گرفته است . مشهور است که plp می تواند به صورت lp با مقدمه ارائه شود . متغییرهای جدید در اینجا یک عدد با نقطه انفصال خطی باشد اگر می باشد . با استفاده از این انتقال ، plfp می تواند به عنوان یک lfp با متغییرهای X+ تنظیم گردد در اینجا یک عدد از نقطه انفصال خطی باشد اگر می باشد .
اما هر lfp می تواند به عنوان یک lp با یک محدودیت اضافی و یک متغییر مازاد تنظیم گردد . در مورد lfp با متغییرهای گوشه دار ، این تغییرات انتقالی در ثابت های گوشه دار در متغییر بالاتر و گوشه های پایین تر به وجود می آیند . عملکرد واضح این متغییر بالاتر و گوشه های پایین تر محدودیت های اضافی x2 را ایجاد می نماید . بنابراین اگر چه یک plfp می تواند به عنوان lp تنظیم شود اما این روش برای عملا ً مناسب نیست چون سایز ناشی از lp می تواند به طور قابل ملاحظه ای بزرگ باشد بخصوص زمانی که ما دارای گوشه هایی در بالا یا پایین در متغییرها می باشیم . مشابه الگاریتم فوریور برای plp ، الگاریتم ما از یک روش مستقیم استفاده می کند که عملکرد آن بر اساس AX=b می باشد . بنابراین مزیت عمده الگاریتم ما ساختار ویژه آن است . در صورتی که A بتواند برای بدست آوردن ضریب انتفاع مورد بهره برداری قرار گیرد . اگر چه الگاریتم ما می تواند به عنوان یک روش درصد شیب ویژه مورد ارزیابی قرار گیرد اما اعداد متناهی غیر قابل تشخیص در تابع هدف به طور موثری توسط طراحی متغییرهای غیر پایه منطبق با نقاط تنظیم می گردند .
در این مقاله به صورت زیر سازمان دهی شده است . در بخش 2 ما به معرفی نمادسازی های مختلف و تعاریف و نتایج پایه می پردازیم ما همچنین به بحث و بررسی تبدیل صورت از PLFP به LFP و LFP به LP خواهیم پرداخت . بخش 3 با الگاریتم ها برای PLFP سروکار دارد . توضیح و تشریح الگاریتم در بخش 4 ارائه می شود . بخش 5 الگاریتم سیمپلکس را برای PLFP با استفاده از نمونه های عددی نشان می دهد . نتایج تجارب محاسباتی مقدماتی در بخش 6 گزارش شده و در نهایت نتایج ملاحظات در بخش 7 ارائه می شود .
2- نشانه گذاری ها ، تعاریف و نتایج پایه
واژه ها و اصطلاحات و همین طور نمادگذاری ها در این بخش معرفی شده و در سراسر این مقاله مورد استفاده قرار می گیرد . اجازه دهید یک نقطه انفصال و نقطه انفصال باشد. اجازه دهید یک آرایش صعودی از عناصر مجزا در هر دوی و خطی باشد . بنابراین و می تواند به این صورت ارائه شود:

و

برای برخی از اعداد حقیقی
چون محدب است و مقعر است ، ما داریم :


تسلسل این توابع به این شکل نشان داده شده است :


از آنجایی که محدب و مقعر است ، انتقال استاندارد برنامه های خطی – تکه ای در برنامه های خطی مورد استفاده قرار می کیرد که به این شکل نشان داده شده است :


Plfp می تواند به عنوان برنامه کسری خطی فرمول بندی شود :
حداقل شده
مشروط براینکه

در اینجا


با استفاده انتقال شناخته شده کارنس و کوپر

این برنامه کسری می تواند به برنامه خطی تقلیل یابد :
تقلیل یافته
مشروط به



توجه کنید که تغییر شکل plfp به lfp یا lp به طور قابل ملاحظه ای مسأله سایز را افزایش می دهد اجازه دهید
مسأله زیر را مورد بررسی قرار دهید

AX=b , مشروط به اینکه

اجازه دهید ارزش بهینگی تابع هدف باشد قبلا ً :

در اینجا S مجموعه راه حل های ممکن است
قضیه زیر در نوشته های برنامه ریزی کسری شناخته شده است که به مورد plfp اختصاص یافته است .
قضیه 1- اجازه دهید یک راه حل بهینه برای plfp و باشد . سپس



بعلاوه یک راه حل بهینه با راه حلی بهینه برای plfp می باشد
قضیه 1 برای ایجاد شرایط بهینگی در روش سیمپلکس ما مورد استفاده قرار می گیرد .
3- الگاریتم سیمپلکس برای plfp
برای بحث و بررسی الگاریتم سیمپلکس برای plfp ما ابتدا نیازمند معرفی مفهوم جواب ممکن بنیادی (Bfs) برای plfp می باشیم . تعاریف ما دقیقا ً از تعریف bfs که توسط فوریور برای plpارائه شده است ، تبعیت می کند . اجازه دهید B یک ماتریس عادی m×m که شامل ستون های m از A می باشد . سپس B یک ماتریس پایه نامیده می شود . اجازه دهید شاخص i امین ستون B در ماتریس A و مجموعه شاخص ستون های B باشد . اجازه دهید به بردار M اختصاص داشته باشد که تطابق مختصات i برای متغییر است اجازه دهید
N={1,2, … , X}\B باشد . متغییرهای متغییرهای پایه نامیده می شود (تطابق با ماتریس پایه B) و N متغییرهای غیر پایه نامیده شده است . متغییرغیر پایه تطابق ارزش ها به نقطه انفصال یا می برد مثلا ً N برای برای متغییر غیر پایه ، اجازه دهید به شاخص اختصاص یابد . اجازه دهید باشد . ما سه وجه یک ساختار پایه می نامیم . ساختار پایه داده شده منطبق با Bfs اختصاصا ً تعریف شده به صورت :


در اینجا A,j ،j امین بردار ستون از ماتریس محدود A می باشد . ما این راه حل را به عنوان مطابقت Bfs با ساختار پایه قرار دادیم اجازه دهید باشد . اگر برای هر i باشد . سپس آن یک Bfs غیر تبهگن است .
قیاس منطقی 2 – اینجا یک راه حل بهینه برای plfp وجود دارد که یک Bfs می باشد
اثبات : اجازه دهید یک راه حل بهینه برای plfp باشد . برای هر j=1,… x یک شاخص همچون انتخاب نمایید . اجازه دهید
اجازه دهید و باشد . سپس هر راه حل بهینه برای LFP به شکل زیر است :
تقلیل یافته
Ax=b , مشروط بر اینکه

یک راه حل بهینه برای plfp است
در Bfs داده شده منطبق با ساختار پایه برای PLFP می باشد ، هر متغییر پایه یک نقطه انتقال از یا است . اجازه دهید به شاخص مثل ، m ... و2و1=i اختصاص یابد . بردار از محور افقی iام به صورت است که بردار با شیب – f منطبق با ساختار پایه می باشد . همچنین بردار – m از محور افقی i که به صورت است بردار محور افقی – g منطبق با می باشد . ارزش متغییر غیر پایه مجاز است که از نقطه انفصال اخیر در جهت گوشه سمت چپ یا جهت گوشه سمت راست تغییر یابد . بنابراین ما دو کمیت که به و اختصاص دارد مورد محاسبه قرار می دهیم که تعریف شده به صورت :


در اینجا Z یک مقدار از تابع هدف در راه حل ممکن پایه می باشد و و منطبق با بردارهای محور افقی f و محور افقی هستند . اگر باشد سپس به عنوان 0 تعریف می شود . به صورت مشابه زمانی که است سپس به شکل 0 تعریف می گردد . صراحتا ً برای همه متغییرهای پایه است . ما را به عنوان گوشه سمت چپ در ارزش کاهش یافته و را به عنوان گوشه سمت راست در ارزش کم شده برای متغییر در نظر می گیریم
قضیه 3 – (معیار بهینگی ) یک راه حل ممکن بنیادی غیر تبهگن در صورتی برای plfp بهینه است اگر و تنها اگر باشد
اثبات . اگر x یک راه حل بهینه غیر تبهگن برای plfp باشد . ما باید نشان دهیم که
باشد . اجازه دهید N شاخص مجموعه متغییرهای غیر پایه و برای باشد ، حالا


در اینجا


فرض کنید برای تعدادی از متغییرهای غیر پایه باشد . راه حل جدید را اینگونه مورد بررسی قرار دهید که


در اینجا یک جزء قرار دادی است .
به طور آشکارا یک راه حل عملی است . چون x غیر تبهگنی که می تواند بدین گونه انتخاب گردد


حالا

ما می دانیم که و به وسیله فرضیات می باشد و به این صورت نشان داده می شود :

این امر بهینگی x را نقض می کند . به طور واضح ما می توانیم این مورد را زمانی که است برای برخی متغییر غیر بنیادی اثبات نماییم .
از طرف دیگر فرض کنید یک Bfs غیر تبهگن می باشد که به صورت وxو...وj=1 و می باشد . ما باید را به عنوان یک راه حل بهینه برای plfp نشان دهیم. ثابت کردن آن به وسیله قضیه 1 تنها کافی است را نشان دهد در اینجا

آشکارا بنابراین است . اگر ممکن است اجازه دهید plp را بررسی نمایید :

مشروط بر اینکه

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  26  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله بهینه سازی پیوسته الگوریتم سیمپلکس

دانلود مقاله بهینه سازی و توابع دامنه متغیر در LINGO

اختصاصی از زد فایل دانلود مقاله بهینه سازی و توابع دامنه متغیر در LINGO دانلود با لینک مستقیم و پر سرعت .

 

 

 


واننده دور اندیش ممکن است چند پله بالاتر را در نظر بگیرد. هنگامی که ما سود مورد انتظار خود را افزایش می دهیم، خط چین نشان دهنده نقاط هم سود، بصورت موازی به سمت بالا انتقال پیدا می کند. این انتقال تا دورترین نقطه ممکنی است که بهترین سود را در یک نقطه شدنی حاصل نماید. این آخرین و بهترین نقطه، C = 30 , A = 60 است و بر روی خط 20A + 30C 2100 قرار دارد. توجه داشته باشید که هر چند سهم سود هر واحد برای Cosmo بیشتر است، اما بیش از 30 دستگاه از آن تولید نکردیم، اگر چه تولید 50 دستگاه نیز شدنی بود. بطور شهودی این نقطه بهینه است و در واقع تنها این نقطه بهینه می باشد. تجزیه و تحلیل گرافیکی این مسئله به ما در فهم آنچه که در مدلهای بزرگتر اتفاق می افتد، کمک می کند.
1 – 4 ) خطی بودن :
اکنون با یک مثال آشنا شدیم. در ادامه مجدداً نیز به این مثال باز خواهیم گشت. این نمونه ای از یک برنامه ریزی خطی است که به اختصار LP نامیده می شود. حل برنامه های خطی بطور ذاتی به مراقب ساده تر از برنامه های کلی تر ریاضیاتی است. بنابراین ارزش این را دارد که در مورد ویژگی – های خطی بودن بیشتر بدانیم.
برنامه ریزی خطی بصورت مستقیم فقط در شرایطی به کار می رود که تاثیر فعالیتهای مختلف در جایی که ما با آن سر و کار داریم، بصورت خطی است. برای مقاصد کاربردی، می توانیم ملزومات خطی بودن را مشتمل بر سه خصوصیت زیر بدانیم :
1 ) متناسب بودن : تاثیر یک متغیر مجزا به خودی خود متناسب است. مثلاً دو برابر شدن میزان فولاد خریداری شده، منجر به دو برابر شدن هزینه خرید آن می شود.
2 ) جمع پذیری : روابط بین متغیرها باید بصورت جمع باشد. برای مثال مقدار دلاری فروش، مجموع فروش دلاری فولاد + فروش دلاری آلومینیم + ... است.
3 ) پیوستگی : متغیرها می بایست پیوسته باشند. برای مثال مقادیر اعشاری برای متغیرهای تصمیم همچون 6.38 مجاز است. اگر 2 و 3 هر دو جواب شدنی باشند، آنگاه 51 . 2 نیز شدنی است. مدلی که شامل دو متغیر تصمیم «قیمت هر واحد فروش رفته» و «مقدار واحد فروش رفته» می باشد، ممکن است متناسب بودن و جمع پذیری را ارضا کند، اما شرایط پیوستگی را نقض کند. فرمولاسیون ممکن برای مواردی که LP به کار می رود، بطور ذاتی بسیار کلی تر از مثال ارائه شده است. تابع هدف ممکن است به جای بیشینه سازی، کمینه سازی باشد. جهت محدودیتها می تواند به جای > ، < باشد و هر یا همه پارامترها می توانند منفی باشند.محدودیت اصلی در دسته مسائلی که می تواند تجزیه و تحلیل شود، از محدودیت خطی بودن منتج می شود.
برای مثال عبارت X * Y ، شرایط متناسب بودن را ارضا می کند، اما تاثیر X و Y بصورت جمع پذیری نیست. در عبارت ، تاثیر X و Y بصورت جمع پذیری است، اما تاثیرات هیچ کدام از آندو بصورت متناسب بودن نیست.

 

1 – 5 ) تجزیه و تحلیل حل های LP
هنگامی که از کامپیوتر حل یک مسئله ریاضی را می خواهید. برای یک مدل LP درست فرموله شده، مسیر منتها الیه سمت چپ به کار برده می شود. رویه حل ابتدا در پی یافتن یک حل شدنی است. برای مثال حلی که همه محدودیتها را ارضا کند، اما الزاماً بهترین حل نباشد. حل منتها الیه سمت راست که حل حل نشدنی است، در صورتیکه فرموله کننده مصر باشد به کار می رود . یعنی دو یا چند محدودیت که نمی توانند بطور همزمان ارضا شوند، بعنوان مثال دو محدودیت 2 > x و 3 <x عدم وجود حل شدنی به تابع هدف بستگی ندارد، بلکه تنها به محدویتها بستگی دارد.
در عمل خروجی No Feasible Solution یا «حل شدنی موجود نمی باشد» می تواند در مسائل بزرگ و پیچیده که در آن یک حد بالا بر روی تعداد ساعتهای در دسترس قابل استفاده است و تقاضای بالای غیر واقع بینانه بر روی تعداد واحدهای تولیدی می باشد. پیغام معادل برای «حل شدنی وجود ندارد» این است که «نمی توانید هم کیک را داشته باشید و هم آن را بخورید!».
اگر یک جواب پیدا شود. آنگاه حل کننده تلاش می کند حل بهینه را بیابد. اگر حالت «حل بیکران» اتفاق بیفتد، دلالت بر این دارد که فرمولاسیون مدل منجر به حالتی می شود که در آن سود بی نهایت امکان پذیر است.
نتیجه گیری واقع بینانه تر آن است که یک محدودیت مهم حذف شده است یا فرمولاسیون شامل خطایی در نوشتن مدل است.
برای نوشتن مدل مسئله Enginola در LINGO کافیست این گونه بنویسیم:
MODEL:
MAX=20 * A+30*C;
A<=60
C<=50
A+2*c<=120;
END
گزارش حل بدین صورت خواهد بود:
Objective value: 2100.000
Variable Value Reduced Cost
A 60.00000 0.00000
C 30.00000 0.00000

 

Row Slack or surplus Dual rice
1 2100.00000 1.00000
2 0.00000 5.00000
3 20.00000 0.00000
4 0.00000 15.00000
خروجی مدل شامل سه بخش است: قسمت حاوی اطلاعات مفید؛ سمت متغیرها، قسمت سطرها، قسمت های دوم و سوم سر راست هستند. راه حل سود بهینه عبارت است از تولید 60 دستگاه Astro و 30 Cosmo برای دستیابی به سود 2100 دلار، این راه حل مقدار مازاد صفر را در سطر دوم مدل ( ) به جا می گذارد، مقدار مازاد 20 در سطر سوم، ( )و عدم وجود مازاد در سطر چهارم مدل ( )را منجر می شود.
سومین ستون شامل تعدادی فرصت با صورتهای هزینه ای حاشیه ای است. تغییر این هزینه های تقلیل یافته (Reduced Cost )، در ادامه توضیح داده می شود: قسمت reduct cost/dual price اختیاری هستند و می توان آنها را در مسیر زیر فعال یا غیر فعال کرد.
LINGO | Options| General Solver| Dual Computations | prices
1 . 6 ) تجزیه و تحلیل حساسیت، هزینه های تقلیل یافته و قیمت های مزدوج:
مدل های LP واقعی نیاز به حجم بالایی از داده ها دارند. جمع آوری داده های دقیق هزینه بر است.
بنابراین ملزم به استفاده از داده ها در موارد ی هستیم که تقریباً اطمینان کمتری داریم. یک مثل معروف در جمع آوری داده می گوید: «زباله درون، زباله بیرون. کاربر در مدل باید بداند با تغییر در داده های ورودی، چه تغییراتی در خروجی های مدل رخ می دهد. تجزیه و تحلیل حساسیت، روشی برای پاسخگویی به این سوال است. خوشبختانه گزارش حل LP ، اطلاعات مکملی را که برای تجزیه و تحلیل حساسیت مفید است، ارائه می دهد.
این اطلاعات همان «Reduced Costs» و «Dual Prices» هستند. تجزیه و تحلیل حساسیت نشان می دهد که چه قسمتهایی از اطلاعات می بایست با بیشترین دقت تخمین زده شوند. برای مثال، اگر به وضوح مشخص باشد که محصول مشخصی سود آور نیست. آنگاه تلاش کمی برای تخمین دقیق هزینه های آن لازم خواهد بود. اولین قانون در مدل سازی این است که: وقت خود را برای یافتن مقدار دقیق پارامتری که خطای کوچکی در آن، تاثیر کمی در تصمیم توصیه شده دارد، تلف نکنید.
1 . 6 . 1 ) هزینه های تقلیل یافته:
متناظر یا هر متغیر در هر حلی، مقداری تحت عنوان هزینه تقلیل یافته وجود دارد. اگر واحدهای تابع هدف بر حسب دلار باشند و واحدهای متغیر بر حسب گالن، آنگاه واحدهای هزینه تقلیل یافته بر حسب دلار بر هر گالن خواهند بود. هزینه تقلیل یافته هر متغیر مقداری است که به ازای آن سهم سود آن متغیر باید بهبود یابد تا آن را واجد شرایط قرار گرفتن در حل بهینه با یک مقدار مثبت نماید. در مورد توابع هدف هزینه ای، این بهبود به معنی کاهش هزینه است. از تعریف هزینه تقلیل یافته واضح است که متغیرهای درون حل بهینه، هزینه تقلیل یافته صفر دارند.
تعبیر دیگری از هزینه تقلیل یافته، است که تابع هدف با غیر صفر شدن یکی از متغیرهای که در حل بهینه مقدار صفر را اختیار کرده است. افت می کند. برای مثال اگر هزینه تقلیل یافته متغیر x، که در حل بهینه مقدار صفر را اختیار کرده است، 2 دلار بر هر گالن باشد، بدین معناست که چنانچه سود آوری هر واحد متغیر x، 2 دلار افزایش یابد. با ورود 1 واحد از ان به حل بهینه (اگر 1 واحد یک متغیر کوچک باشد.) سود کلی تغییری نمی کند. واضح است که اگر x بدون تغییر در سهم سود خود (ضریب x در تابع هدف) تا یک واحد افزایش یابد، مقدار تابع هدف 2 دلار کاهش می یابد.
1 . 6 . 2 ) قیمت های مزدوج:
متناظر با هر محدودیت، کمیتی وجود دارد که آن را با نام قیمت مزدوج با قیمت دو گان می شناسیم. اگر واحدهای تابع هدف بر حسب دلار و واحد محدودیتها بر حسب کیلو گرم باشند، آنگاه واحدهای هزینه تقلیل یافته برابر با دلار بر کیلو گرم خواهد بود. قیمت دو گان یک محدودیت، نرخ بهبود تابع هدف به ازای تغییر کوچکی در مقدار سمت راست آن محدودیت است.
برنامه های مختلف بهینه سازی ممکن است از علائم متفاوتی در ارتباط با قیمت های مزدوج استفاده کنند. برای LINGO منظور از یک قیمت مزدوج مثبت بهبودی است که با افزایش مقدار سمت راست محدودیت در تابع هدف حاصل می شود. از سوی دیگر قیمت مزدوج منفی به معنی افت تابع هدف در صورت افزایش مقدار سمت راست محدودیت است. قیمت مزدوج صفر نیز به معنی این است که تغییر مقدار سمت راست محدودیت، هیچ تاثیری در مقدار حل ندارد.
با توجه به این قرار داد، محدودیت های کوچکتری مساوی ( ) قیمت های دو گان نا منفی و محدودیت های بزرگتر مساوی ( ) قیمت های دو گان نا مثبت خواهند داشت. محدودیتهایی که به صورت تساوی ارضا می شوند نیز می توانند هر نوع قیمت مزدوجی داشته باشند چرا؟
بهتر است در اینجا مفهوم قیمت های مزدوج را درک کنیم تا بتوانیم آنها را در حل مسئله Enginola تجزیه و تحلیل کنیم. قیمت مزدوج محدودیت برابر با 5 دلار به ازای هر واحد است. در وهله اول ممکن است شک کنید که این مقدار باید 20 دلار هر واحد باشد. چرا که اگر یک دستگاه بیشتر تولید شود، سهم سود این یک واحد اضافه 20 دلار خواهد بود. اما باید توجه داشت که برای تولید یک دستگاه Astro بیشتر، لازم است که سایر محدودیتها ارضا شوند.
هنگامی که تمامی موجودی نیروی کار مصرف شده است، تولید یک واحد Astro اضافه باعث کاهش تولید Cosmo خواهد شد. زیرا لازم است برای تولید Astro اضافه، مقداری از نیروی کار آزاد شود. نرخ مبادله نیروی کار برای Astro و Cosmo برابر با یعنی تولید 1 واحد اضافه Astro، باعث کاهش واحد از می شود. افزایش خالص سود برابر با دلار خواهد بود. چرا که سهم سود Cosmo برابر 30 دلار است.
اکنون قیمت مزدوج 15 دلار بر ساعت را برای محدودیت نیروی کار در نظر بگیرید. اگر 1 ساعت بیشتر نیروی کار داشته باشیم، فقط برای تولید محصول سود آور تر Cosmo مصرف می شد. هر واحد Cosmo، سهم سودی معادل 30 دلار دارد. از آنجا که یک ساعت نیروی کار فقط برای تولید واحد Cosmo کفایت می کند، ارزش یک ساعت نیروی کار اضافی برابر با دلار خواهد بود.
1 . 7 ) فرمولاسیونهای بیکران:
اگر فراموش کردیم که محدودیت نیروی کمار و محدودیت تولید Cosmo را وارد کنیم، آنگاه می توان مقدار نامحدودی سود با تولید، مقدار زیادی Cosmo به دست آوریم، این مساله در اینجا نشان داده شده است:
MAX=20*A+30*C;
A<=60;
این باعث ظاهر شدن پیغام خطای UNBOUNDED SOLUTION می شود، چرا که هیچ محدودیتی بر روی c برای اینکه به صورت نامحدود بزرگ نشود وجود ندارد. در مسائل بزرگتر، بطور معمول چند متغیر بیکران وجود دارد و نمی توان به راحتی تشخیص داد که بیکران تابع هدف از کجا ناشی شده است.
1 . 8 ) فرمولاسیون های نشدنی:
مثالی از فرمولاسیون نشدنی هنگامی است که مقدار سمت راست نیروی کاری به 190 تغییر یافته و جهت نامساوی نیز تغییر کند. در این مورد حداکثر نیروی کاری که می تواند برای تولید 60 واحد Astro و 50 واحد Cosmo مورد استفاده قرار گیرد، برابر با ساعت است؛ در صورتیکه در محدودیت باید بزرگتر مساوی 190 باشد:
MAX= (20*A)+(30*C);
A<=60;
C<=50;
A+2*C>=190;
پنجره ای با پیغام خطای NO FEASIBLE SOLUTION ظاهر خواهد شد. پنجره گزارش حل، اطلاعات زیر را تولید خواهد کرد:
Variable Value Reduced Cost
A 60.00000 0.00000
C 50.00000 0.00000
Row Slack or Surplus Dual price
1 2700.00000 0.00000
2 0.00000 1.00000
3 0.00000 2.00000
4 -30.00000 -1.00000
حل برای محدودیت نیروی کار، به میزان نفر ساعت نشدنی خواهد بود. قیمت هیا مزدوج در این حالت اطلاعات مفیدی در تعیین اینکه چگونه نشدنی بودن روی می دهد در اختیار ما قرار می دهند. برای مثال 1+ در سطر 2 بدین معناست که افزایش مقدار سمت راست آن، به میزان 1 واحد، نشدنی بودن به میزان 1 واحد کاهش خواهد داد. 2+ در سطر 3 یعنی اگر مجاز به تولید 1 واحد Cosmo اضافه باشیم، نشدنی بودن به میزان 2 واحد کاهش خواهد یافت. زیرا هر واحد Cosmo، 2 نفر ساعت از نیروی کار مصرف خواهد کرد. مقدار 1- متناظر با سطر 4 نیز بدین معناست که کاهش مقدار سمت راست محدودیت نیروی کار به میزان 1 واحد، نشدنی را به میزان 1 واحد کاهش خواهد داد.

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  63  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله بهینه سازی و توابع دامنه متغیر در LINGO