زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

زد فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پایان نامه ارشد رشته مکانیک مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

اختصاصی از زد فایل پایان نامه ارشد رشته مکانیک مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی دانلود با لینک مستقیم و پر سرعت .

پایان نامه ارشد رشته مکانیک مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی


پایان نامه ارشد رشته مکانیک مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

دانلود پایان نامه ارشد رشته مکانیک مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی با فرمت ورد و قابل ویرایش تعداد صفحات 240

دانلود پایان نامه آماده

چکیده

 از آنجائیکه شرکت های بزرگ در رشته نانو فناوری مشغول فعالیت هستند و رقابت بر سر عرصه محصولات جدید شدید است و در بازار رقابت، قیمت تمام شده محصول، یک عامل عمده در موفقیت آن به شمار می رود، لذا ارائه یک مدل مناسب که رفتار نانولوله های کربن را با دقت قابل قبولی نشان دهد و همچنین استفاده از آن توجیه اقتصادی داشته باشد نیز یک عامل بسیار مهم است. به طور کلی دو دیدگاه برای بررسی رفتار نانولوله های کربنی وجود دارد، دیدگاه دینامیک مولکولی و محیط پیوسته. دینامیک مولکولی با وجود دقت بالا، هزینه های بالای محاسباتی داشته و محدود به مدل های کوچک می باشد. لذا مدل های دیگری که حجم محاسباتی کمتر و توانایی شبیه سازی سیستمهای بزرگتر را با دقت مناسب داشته باشند بیشتر توسعه یافته اند.پیش از این بر اساس تحلیل های دینامیک مولکولی و اندرکنش های بین اتم ها، مدلهای محیط پیوسته، نظیر مدلهای خرپایی، مدلهای فنری، قاب فضایی، بمنظور مدلسازی نانولوله ها، معرفی شده اند. این مدلها، بدلیل فرضیاتی که برای ساده سازی در استفاده از آنها لحاظ شده اند، قادر نیستند رفتار شبکه کربنی در نانولوله های کربنی را بطور کامل پوشش دهند.

 

مقدمه

نانو فناوری عبارت ازآفرینش مواد، قطعات و سیستم های مفید با کنترل آنها در مقیاس طولی نانو متر و بهره برداری از خصوصیات و پدیده های جدید حاصله در آن مقیاس می باشد. به عبارت دیگر فناوری نانو، ایجاد چیدمانی دلخواه از اتم ها و مولکول ها و تولید مواد جدید با خواص مطلوب است. فناوری نانو، نقطه تلاقی اصول مهندسی، فیزیک، زیست شناسی، پزشکی و شیمی است و به عنوان ابزاری برای کاربرد این علوم و غنی سازی آنها در جهت ساخت عناصر کاملاً جدید عمل می کند.از لحاظ ابعادی، یک نانو متر اندازه ای برابر 9-10 متر است (شکل 1-1) . این اندازه تقریباً چهار برابر قطر یک اتم منفرد می باشد.

 

فهرست مطالب
عنوان                                                                                                             صفحه

فهرست علائم    ر
فهرست جداول    ز
فهرست اشکال    س

چکیده    1

فصل اول    
مقدمه نانو    3
1-1 مقدمه    4
   1-1-1 فناوری نانو    4
1-2 معرفی نانولوله‌های کربنی    5
   1-2-1 ساختار نانو لوله‌های کربنی    5
   1-2-2 کشف نانولوله    7
1-3 تاریخچه    10

فصل دوم    
خواص و کاربردهای نانو لوله های کربنی    14
2-1 مقدمه    15
2-2 انواع نانولوله‌های کربنی    16
   2-2-1 نانولوله‌ی کربنی تک دیواره (SWCNT)    16
   2-2-2 نانولوله‌ی کربنی چند دیواره (MWNT)    19
2-3 مشخصات ساختاری نانو لوله های کربنی    21
   2-3-1 ساختار یک نانو لوله تک دیواره    21
   2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره    24
2-4 خواص نانو لوله های کربنی    25
   2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن    29
       2-4-1-1 مدول الاستیسیته    29
       2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک    33
       2-4-1-3 تغییر شکل پلاستیک و تسلیم نانو لوله ها    36
2-5 کاربردهای نانو فناوری    39
   2-5-1 کاربردهای نانولوله‌های کربنی    40
       2-5-1-1 کاربرد در ساختار مواد    41
       2-5-1-2 کاربردهای الکتریکی و مغناطیسی    43
       2-5-1-3 کاربردهای شیمیایی    46
       2-5-1-4 کاربردهای مکانیکی    47

فصل سوم    
روش های سنتز نانو لوله های کربنی     55
3-1 فرایندهای تولید نانولوله های کربنی    56
   3-1-1 تخلیه از قوس الکتریکی    56
   3-1-2 تبخیر/ سایش لیزری    58
   3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD)    59
   3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD )    61
   3-1-5 رشد فاز  بخار    62
   3-1-6 الکترولیز    62
   3-1-7 سنتز شعله    63
   3-1-8 خالص سازی نانولوله های کربنی    63
3-2 تجهیزات    64
   3-2-1 میکروسکوپ های الکترونی    66
   3-2-2 میکروسکوپ الکترونی عبوری (TEM)    67
   3-2-3 میکروسکوپ الکترونی پیمایشی یا پویشی (SEM)    68
   3-2-4 میکروسکوپ های پروب پیمایشگر (SPM)    70
       3-2-4-1 میکروسکوپ های نیروی اتمی (AFM)    70
       3-2-4-2 میکروسکوپ های تونل زنی پیمایشگر (STM)    71

فصل چهارم    
شبیه سازی خواص و رفتار نانو لوله های کربنی بوسیله روش های پیوسته    73
4-1 مقدمه    74
4-2 مواد در مقیاس نانو    75
   4-2-1 مواد محاسباتی    75
   4-2-2 مواد نانوساختار    76
4-3 مبانی تئوری تحلیل مواد در مقیاس نانو    77
   4-3-1 چارچوب های تئوری در تحلیل مواد    77
       4-3-1-1 چارچوب محیط پیوسته در تحلیل مواد    77
4-4 روش های شبیه سازی    79
   4-4-1 روش دینامیک مولکولی    79
   4-4-2 روش مونت کارلو    80
   4-4-3 روش محیط پیوسته    80
   4-4-4 مکانیک میکرو    81
   4-4-5 روش المان محدود (FEM)    81
   4-4-6 محیط پیوسته مؤثر    81
4-5 روش های مدلسازی نانو لوله های کربنی    83
   4-5-1 مدلهای مولکولی    83
       4-5-1-1 مدل مکانیک مولکولی ( دینامیک مولکولی)    83
       4-5-1-2 روش اب انیشو    86
       4-5-1-3 روش تایت باندینگ    86
       4-5-1-4 محدودیت های مدل های مولکولی    87
   4-5-2 مدل محیط پیوسته در مدلسازی نانولوله ها    87
       4-5-2-1 مدل یاکوبسون    88
       4-5-2-2 مدل کوشی بورن    89
       4-5-2-3 مدل خرپایی    89
       4-5-2-4 مدل  قاب فضایی    92
4-6 محدوده کاربرد مدل محیط پیوسته    95
   4-6-1 کاربرد مدل پوسته پیوسته    97
   4-6-2 اثرات سازه نانولوله بر روی تغییر شکل    97
   4-6-3 اثرات ضخامت تخمینی بر کمانش نانولوله    98
   4-6-4 اثرات ضخامت تخمینی بر کمانش نانولوله    99
   4-6-5 محدودیتهای مدل پوسته پیوسته    99
       4-6-5-1 محدودیت تعاریف در پوسته پیوسته    99
       4-6-5-2 محدودیت های تئوری کلاسیک محیط پیوسته    99
   4-6-6 کاربرد مدل تیر پیوسته      100

فصل پنجم    
مدل های تدوین شده برای شبیه سازی رفتار نانو لوله های کربنی     102
5-1 مقدمه    103
5-2 نیرو در دینامیک مولکولی    104
   5-2-1 نیروهای بین اتمی    104
       5-2-1-1 پتانسیلهای جفتی    105
       5-2-1-2 پتانسیلهای چندتایی    109
   5-2-2 میدانهای خارجی نیرو    111
5-3 بررسی مدل های محیط پیوسته گذشته    111
5-4 ارائه مدل های تدوین شده برای شبیه سازی نانولوله های کربنی    113
   5-4-1 مدل انرژی- معادل    114
       5-4-1-1 خصوصیات  محوری نانولوله های کربنی تک دیواره    115
       5-4-1-2 خصوصیات  محیطی نانولوله های کربنی تک دیواره    124
   5-4-2 مدل اجزاء محدود بوسیله نرم افزار ANSYS    131
       5-4-2-1 تکنیک عددی بر اساس المان محدود    131
       5-4-2-2 ارائه 3 مدل تدوین شده اجزاء محدود توسط نرم افزار ANSYS    141
   5-4-3 مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB    155
       5-4-3-1 مقدمه    155
       5-4-3-2 ماتریس الاستیسیته    157
       5-4-3-3 آنالیز خطی و روش اجزاء محدود برپایه جابجائی    158
       5-4-3-4 تعیین و نگاشت المان    158
       5-4-3-5 ماتریس کرنش-جابجائی    161
       5-4-3-6 ماتریس سختی برای یک المان ذوزنقه ای    162
       5-4-3-7 ماتریس سختی برای یک حلقه کربن    163
       5-4-3-8 ماتریس سختی برای یک ورق گرافیتی تک لایه    167
       5-4-3-9 مدل پیوسته به منظور تعیین خواص مکانیکی ورق گرافیتی تک لایه    168

فصل ششم    
نتایج    171
6-1 نتایج حاصل از مدل انرژی-معادل    172
   6-1-1 خصوصیات محوری نانولوله کربنی تک دیواره    173
   6-1-2 خصوصیات محیطی نانولوله کربنی تک دیواره    176
6-2 نتایج حاصل از مدل اجزاء محدود بوسیله نرم افزار ANSYS    181
   6-2-1 نحوه مش بندی المان محدود نانولوله های کربنی تک دیواره در نرم افزار ANSYS و ایجاد ساختار قاب فضایی و مدل سیمی به کمک نرم افزار ]54MATLAB [    182
   6-2-2 اثر ضخامت بر روی مدول الاستیک نانولوله های کربنی تک دیواره    192
6-3 نتایج حاصل از مدل اجزاء محدود بوسیله کد تدوین شده توسط نرم افزار MATLAB    196

فصل هفتم    
نتیجه گیری و پیشنهادات     203
7-1 نتیجه گیری    204
7-2 پیشنهادات    206

فهرست مراجع     207















فهرست علائم
تعریف                                                                                                علائم اختصاری      

SWCNTs : Single-Walled Carbon Nanotubes
MWCNTs : Multi-Walled Carbon Nanotubes
CNTs : Carbon Nano Tubes
MWNTs : Multi-Walled Nano Tubes
FED : Field Emission Devices
TEM : Transmission Electron Microscope
SEM : Scanning Electron Microscopy
CVD : Chemical Vapor Deposition
PECVD : Plasma Enhanced Chemical Vapor Deposition
SPM : Scanning Probe Microscopy
NEMs : Nano Electro Mechanical System
AFM : Atomic Force Microscopy
STM : Scanning Tunnelling Microscopy
FEM : Finite Element Modeling
ASME : American Society of Mechanical Engineers
RVE : Representative Volume Element
SLGS: Single-Layered Grephene Sheet















فهرست جداول
عنوان                                                                                                             صفحه
جدول 4-1: اتفاقات مهم در توسعه مواد در 350 سال گذشته .......................................................................76
جدول 5-1: خصوصیات هندسی و الاستیک المان تیر.................................................................................135
جدول5-2 : پارامترهای اندرکنش واندر والس ...........................................................................................150
جدول6-1: اطلاعات مربوط به مش بندی المان محدود مدل قاب فضایی در نرم افزار ANSYS ...............184
جدول6-2 : مشخصات هندسی نانولوله های کربنی تک دیواره در هر سه مدل ...........................................185
جدول6-3 : داده ها برای مدول یانگ در هر سه مدل توسط نرم افزار ANSYS .......................................186
جدول6-4 : داده ها برای مدول برشی در هر سه مدل توسط نرم افزار ANSYS .......................................187
جدول6-5 : مقایسه نتایج مدول یانگ برای مقادیر مختلف ضخامت گزارش شده .......................................194
جدول 6-6 : مشخصات صفحات گرافیتی مدل شده با آرایش صندلی راحتی .............................................196
جدول 6-7 : مشخصات صفحات گرافیتی مدل شده با آرایش زیگزاگ .....................................................197
جدول 6-8 : مقایسه مقادیر E، G و   به دست آمده از مدل های تدوین شده در این تحقیق با نتایج موجود در منابع ..........................................................................................................................................................202
















فهرست اشکال
عنوان                                                                                                                   صفحه
شکل 1-1 : میکروگراف TEMکه لایه های نانو لوله کربنی چند دیواره را نشان می دهد ...............................4
شکل 1-2 : اشکال متفاوت مواد با پایه کربن ..................................................................................................6
شکل 1-3 : تصویر گرفته شده TEM که فلورن هایی کپسول شده به صورت نانولوله های کربنی تک دیواره را نشان می دهد .................................................................................................................................................7
شکل 1-4 : تصویر TEM  از  نانولوله کربنی دو دیواره که فاصله دو دیواره در عکس TEM  nm 36/0 می باشد ..............................................................................................................................................................8
شکل 1-5 : تصویر TEM گرفته شده  از  نانوپیپاد .........................................................................................8
شکل 2-1 : تصویر نانو لوله های تک دیواره و چند دیواره کشف شده توسط ایجیما در سال 1991................15
شکل 2-2 : انواع نانولوله:  (الف) ورق گرافیتی (ب) نانولوله زیگزاگ (0، 12)  (ج) نانولوله زیگزاگ (6، 6) (د) نانولوله کایرال (2، 10) ..........................................................................................................................17
شکل 2-3 : شبکه شش گوشه ای اتم های کربن ..........................................................................................18
شکل2-4 : تصویر شماتیک شبکه شش گوشه ای ورق گرافیتی، شامل تعریف پارامترهای ساختاری پایه و توصیف اشکال نانولوله های کربنی تک دیواره ............................................................................................19
شکل 2-5 : شکل شماتیک یک نانولوله کربنی چند دیواره MWCNTs ...................................................20
شکل 2-6 : نانو پیپاد ....................................................................................................................................21
شکل 2-7 : شکل شماتیک یک نانو لوله که  از  حلقه ها شش ضلعی کربنی تشکیل شده است .....................22
شکل2-8 : تصویر شماتیک یک حلقه شش ضلعی کربنی و پیوندهای مربوطه...............................................22
شکل 2-9 : تصویر شماتیک شبکه کربن در سلول های شش ضلعی .............................................................23
شکل 2-10: توضیح بردار لوله کردن نانو لوله، بصورت ترکیب خطی  از  بردارهای پایه b , a .....................23
شکل2-11: نمونه های نانولوله های صندلی راحتی، زیگزاگ و کایرال و انتها بسته آنها که مرتبط است با تنوع فلورن ها ......................................................................................................................................................24
شکل 2-12: تصویر سطح مقطع یک نانو لوله ...............................................................................................25
شکل 2-13: مراحل  آزاد سازی نانو لوله کربن ............................................................................................33
شکل 2-14 : مراحل کمانش و تبدیل پیوندها در یک نانو لوله تحت بار فشاری ............................................36
شکل 2-15: نحوه ایجاد و رشد نقایص تحت بار کششی  الف: جریان پلاستیک، ب: شکست ترد (در اثر ایجاد نقایص پنج و هفت ضلعی) ج: گردنی شدن نانو لوله در اثر اعمال بار کششی .................................................38
شکل 2-16: تصویر میکروسکوپ الکترونی پیمایشی SEM اعمال بار کششی بر یک نانو لوله .....................39
شکل 2-17: شکل شماتیک یک نانولوله کربنی به عنوان نوک AFM. .......................................................47
شکل2-18 : نانودنده ها ...............................................................................................................................50
شکل 3- 1: آزمایش تخلیه قوس ..................................................................................................................56
شکل 3-2 : دستگاه تبخیر/سایش لیزری .......................................................................................................58
شکل 3-3 : شماتیک ابزار CVD ...............................................................................................................60
شکل 3-4 : میکروگرافی که صاف و مستقیم بودن MWCNTs  را که به روش PECVD رشد یافته  نشان می دهد .......................................................................................................................................................62
شکل 3-5 : میکروگراف که کنترل بر روی نانو لوله ها را نشان می دهد: (الف)   40–50 nmو (ب). 200–300 nm ...................................................................................................................................................62
شکل 3-6 : نانولوله کربنی MWCNT به عنوان تیرک AFM ..................................................................71
شکل 4-1 : تصویر شماتیک ارتباط بین زمان و مقیاس طول روشهای شبیه سازی چند مقیاسی .......................75
شکل 4-2 : مدل سازی موقعیت ذرات در محیط پیوسته ................................................................................77
شکل 4-3 : محدوده طول و مقیاس زمان مربوط به روشهای شبیه سازی متداول ............................................82
شکل 4-4 : تصویر تلاقی ابزار اندازه گیری و روش های شبیه سازی .............................................................82
شکل 4-5 : تصویر شماتیک وابستگی درونی روش ها و اصل اعتبار روش ....................................................83
شکل 4-6 : تصویر شماتیک اتمهای i،j وk و پیوندها و زاویه پیوند مربوطه ...................................................85
شکل 4-7 : موقعیت نسبی اتمها در شبکه کربنی برای بدست آوردن طول پیوندها در نانولوله ........................85
شکل 4- 8 : المان حجم معرف در نانو لوله کربنی ........................................................................................90
شکل 4- 9 : مدلسازی محیط پیوسته معادل ...................................................................................................90
شکل 4- 10 : المان حجم معرف برای مدلهای شیمیایی، خرپایی و محیط پیوسته ...........................................92
شکل4-11 : تصویر شماتیک تغییر شکل المان حجم معرف .........................................................................92
شکل4-12 : شبیه سازی نانو لوله بصورت یک قاب فضایی ..........................................................................93
شکل4- 13 : اندرکنشهای بین اتمی در مکانیک مولکولی ............................................................................93
شکل4-14: شکل شماتیک یک صفحه شبکه ای کربن شامل اتم های کربن در چیدمان های شش گوشه ای.96
شکل 4-15: شکل شماتیک گروهای مختلف نانولوله کربنی .........................................................................97
شکل 4-16: وابستگی کرنش بحرانی نانولوله به شعاع با ضخامت های تخمینی متفاوت .................................98
شکل 5-1: نمایش نیرو وپتانسیل لنارد-جونز برحسب فاصله بین اتمی r ......................................................107
شکل 5-2 : نمایش نیرو وپتانسیل مورس برحسب فاصله بین اتمی r ............................................................108
شکل 5-3 : تصویر شماتیک اتمهای i،j وk و پیوندها و زاویه پیوند مربوطه ................................................109
شکل5-4 : فعل و انفعالات بین اتمی در مکانیک مولکولی .........................................................................115
شکل5-5 : شکل شماتیک (الف) یک نانولوله صندلی راحتی (ب) یک نانولوله زیگزاگ ..........................116
شکل5-6 : شکل شماتیک یک نانولوله صندلی راحتی (الف) واحد شش گوشه ای (ب) نیرو های توزیع شده روی پیوند b .............................................................................................................................................117
شکل5-7 : شکل شماتیک یک نانولوله زیگزاگ (الف) واحد شش گوشه ای (ب) نیرو های توزیع شده روی پیوند b ......................................................................................................................................................120
شکل5– 8 :  تصویر شماتیک توزیع نیروها برای یک نانولوله کربنی تک دیواره .........................................122
شکل 5-9 : تصویر شماتیک توزیع نیرو در یک نانولوله کربنی زیگزاگ ....................................................124
شکل5- 10: تصویر شماتیک (الف) نانولوله کربنی Armchair، (ب) مدل تحلیلی برای تراکم در جهت محیطی (ج) روابط هندسی .........................................................................................................................125
شکل 5-11: تصویر شماتیک (الف) نانولوله کربنیZigzag(ب)مدل تحلیلی برای فشار در جهت محیطی...129
شکل 5-12: تعادل مکانیک مولکولی و مکانیک ساختاری برای تعاملات کووالانس و غیر کووالانس بین اتم های کربن (الف) مدل مکانیک مولکولی (ب) مدل مکانیک ساختاری .......................................................132
شکل 5-13: منحنی پتانسیل لنارد-جونز و نیروی واندروالس نسبت به فاصله اتمی .......................................133
شکل5-14 : رابطه نیرو (بین پیوند کربن-کربن) و کرنش بر اساس پتانسیل بهبود یافته مورس ......................137
شکل 5-15 :استفاده از المان میله خرپایی  برای شبیه سازی نیروهای واندروالس .........................................138
شکل5-16 : منحنی نیرو-جابجائی غیر خطی میله خرپایی ...........................................................................139
شکل 5-17: تغییرات سختی فنر نسبت به جابجائی بین اتمی ........................................................................140
شکل 5-18: مدل های المان محدود ایجاد شده برای اشکال مختلف نانولوله (الف) :صندلی راحتی (7،7) (ب):زیگزاگ(7،0) (ج): نانولوله دودیواره (5،5) و (10،10) ......................................................................140
شکل5-19 : المان های نماینده برای مدل های شیمیایی ، خرپایی و محیط پیوسته ........................................142
شکل 5-20 : شبیه سازی  نانولوله های کربنی تک دیواره به عنوان ساختار قاب فضایی ...............................144
شکل5-21 : شرایط مرزی و بارگذاری بر روی مدل المان محدود نانو لوله کربنی تک دیواره: (الف) زیگزاگ (7،0) ، (ب) صندلی راحتی (7،7) ، (ج) زیگزاگ (0،10) ، (د) صندلی راحتی (7،7) .................................145
شکل5-22 : شرایط مرزی و بارگذاری بر روی مدل المان محدود نانو لوله کربنی چند دیواره: (الف) مجموعه 4 دیواره نانولوله زیگزاگ (5،0) (14،0) (23،0) (32،0) تحت کشش خالص ، (ب) مجموعه 4 دیواره نانولوله صندلی راحتی (5،5) (10،10) (15،15) (20،20) تحت پیچش خالص .........................................................145
شکل5-23 : نانولوله تحت کشش ..............................................................................................................147
شکل5-24 : یک نانولوله کربنی تک دیواره شبیه سازی شده به عنوان ساختار قاب فضایی ..........................148
شکل5-25 : شکل شماتیک اتمهای کربن و پیوند های کربن متصل کننده آنها در ورق گرافیت .................148
شکل 5-26 : نمودار Eωa بر حسب فاصله بین اتمی ρa ............................................................................150
شکل 5-27 : شکل شماتیک شش گوشه ای کربن و اتم های کربن و پیوندهای کواالانس و واندروالس .....151
شکل5-28 : شکل شماتیک شش گوشه ای کربن که تنها پیوندهای کووالانس را نشان می دهد .................151
شکل5-29 : سه حالت بارگذاری برای معادل سازی انرژی کرنشی مدل ها .................................................152
شکل5-30 : شکل شماتیک از شش گوشه ای کربن و نیرو های غیر پیوندی ..............................................154
شکل5-31 : شکل شماتیک شش گوشه ای کربن با در نظر گرفتن 9 پیوند واندروالس بین اتم های کربن ...154
شکل5-32: یک مدل جزئی از ساختار شبکه ای رول نشده که نانولوله کربنی را شکل می دهد. شش ضلعی های متساوی الاضلاع نماینده حلقه های شش ضلعی پیوند های کووالانس کربن می باشد، که هر رأس آن محل قرار گیری اتم کربن می باشد ....................................................................................................................156
شکل5-33 : شکل یک حلقه کربن به صورت یک شش ضلعی متساوی الاضلاع و هر اتم کربن به عنوان گره با نامگذاری قراردادی ....................................................................................................................................159
شکل 5-34 : شکل یک ذوزنقه متساوی الساقین از حلقه شش گوشه  ای کربن (الف) در فضای   x و y  (ب) شکل نگاشت یافته در فضای r و s ..............................................................................................................159
شکل 5-35 : المان ذوزنقه ای هم اندازه و مشابه المان اصلی ABCF که در صفحه به اندازه زاویه θ چرخیده است ..........................................................................................................................................................163
شکل 5-36 : شش حالت ممکن ذوزنقه شکل گرفته در شش گوشه ای کربن ABCDEF. هر ذوزنقه یک شکل دوران یافته از دیگری است ..............................................................................................................166
شکل 5-37 : حلقه شش گوشه ای کربن ABCDEF که تشکیل شده از دو ذوزنقه ABCD و DEFC، دراین شکل نشان داده شده که در این حالت تنها CF ایجاد شده است .......................................................167
شکل 5-38 : شکل شماتیک حلقه کربن شش گوشه ای به عنوان المان پایه صفحه گرافیتی ........................168
شکل 5-39 : پارامترهای هندسی ورق گرافیتی ............................................................................................169
شکل 5-40 : مدل ورق گرافیتی زیگزاگ.ورق گرافیتی تک لایه a)تحت کشش b)تحت بار های مماسی..170
شکل6-1: شکل شماتیک (الف) یک نانولوله صندلی راحتی (ب) یک نانولوله زیگزاگ ...........................172
شکل 6-2 : تغییرات مدول یانگ در جهت محوری E................................................................................173
شکل 6-3 : تغییرات مدول برشی G ...........................................................................................................174

دانلود با لینک مستقیم


پایان نامه ارشد رشته مکانیک مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته

اختصاصی از زد فایل اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته دانلود با لینک مستقیم و پر سرعت .

اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته


اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته

 

 

 

 

 

 

 

 

 

عنوان انگلیسی: 

Effect of inulin addition on rheological and sensory properties of fat-free starch-based dairy desserts

عنوان فارسی:

اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته

 

 

تعداد صفحات مقاله اصلی: 9 صفحه

تعداد صفحات ترجمه: 17 صفحه

سال انتشار: 2006

مجله

 

International Dairy Journal 16 (2006) 1104–1112

 

 

Abstract

The effect of inulin addition on the rheological and sensory properties of fat-free dairy desserts containing different starch concentrations (2.5%, 3.25% and 4%) was compared with the properties of full fat milk samples. All samples showed a thixotropic and shear-thinning flow behaviour. Hysteresis loops of inulin–skimmed milk samples were similar to those of whole milk samples without inulin. Skimmed milk samples showed lower consistency and lower shear thinning than either whole milk or inulin–skimmed milk samples. Inulin addition increased both storage modulus and complex viscosity values and decreased loss angle tangent value, except in the 4% starch sample. Adding inulin to fat-free dairy model desserts increased sweetness, thickness and creaminess. At low starch concentrations, inulin–skimmed milk desserts were perceived as sweeter, with more vanilla flavour and with the same thickness as whole milk desserts, but at 4% starch, the latter were thicker and creamier

 

Keywords: Inulin; Dairy dessert; Fat content; Flow behaviour; Thickness; Creaminess

 

 

 

چکیده

اثر افزودن اینولین بر روی خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی با غلظتهای نشاسته مختلف (5/2٪، 25/2٪ و 4٪) با خواص نمونه های شیر پرچرب مقایسه شد. تمام نمونه ها رفتار جریان یافتگی تیکسوتروپی و نازک شدگی برشی از خود به نمایش گذاشتند. چرخه های پسماند نمونه های شیر بدون چربی با اینولین شبیه به نمونه های شیر کامل بدون اینولین بود. نمونه های شیر بدون چربی سازگاری و نازک شدگی برشی پایین تری هم نسبت به نمونه های شیر کامل و هم نسبت به نمونه های شیر بدون چربی اینولین دار از خود نشان دادند. اضافه شدن اینولین هر دو مقدار مدول ذخیره سازی و ویسکوزیته مختلط را افزایش داد و مقدار تانژانت زاویه افت را کاهش داد، به جز در نمونه با 4٪ نشاسته. اضافه کردن اینولین به دسرهای مدل لبنی بدون چربی شیرینی، غلظت و حالت خمیری را افزایش داد. در غلظتهای نشاسته کم، نمونه های شیر بدون چربی اینولینی، با چاشنی وانیل بیشتر و با غلطت مشابه نسبت به دسرهای شیر کامل، شیرین تر به نظر رسید، اما در 4٪ نشاسته، دومی غلیظ تر بود و حالت خمیری بیشتری داشت.

کلید واژه ها: اینولین؛ دسر لبنی؛ محتوای چربی؛ رفتار جریان؛ غلظت؛ حالت خمیری


دانلود با لینک مستقیم


اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته

اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته

اختصاصی از زد فایل اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته دانلود با لینک مستقیم و پر سرعت .

اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته


اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته

 

 

 

 

 

 

 

 

 

عنوان انگلیسی: 

Effect of inulin addition on rheological and sensory properties of fat-free starch-based dairy desserts

عنوان فارسی:

اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته

 

 

تعداد صفحات مقاله اصلی: 9 صفحه

تعداد صفحات ترجمه: 17 صفحه

سال انتشار: 2006

مجله

 

International Dairy Journal 16 (2006) 1104–1112

 

 

Abstract

The effect of inulin addition on the rheological and sensory properties of fat-free dairy desserts containing different starch concentrations (2.5%, 3.25% and 4%) was compared with the properties of full fat milk samples. All samples showed a thixotropic and shear-thinning flow behaviour. Hysteresis loops of inulin–skimmed milk samples were similar to those of whole milk samples without inulin. Skimmed milk samples showed lower consistency and lower shear thinning than either whole milk or inulin–skimmed milk samples. Inulin addition increased both storage modulus and complex viscosity values and decreased loss angle tangent value, except in the 4% starch sample. Adding inulin to fat-free dairy model desserts increased sweetness, thickness and creaminess. At low starch concentrations, inulin–skimmed milk desserts were perceived as sweeter, with more vanilla flavour and with the same thickness as whole milk desserts, but at 4% starch, the latter were thicker and creamier

 

Keywords: Inulin; Dairy dessert; Fat content; Flow behaviour; Thickness; Creaminess

 

 

 

چکیده

اثر افزودن اینولین بر روی خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی با غلظتهای نشاسته مختلف (5/2٪، 25/2٪ و 4٪) با خواص نمونه های شیر پرچرب مقایسه شد. تمام نمونه ها رفتار جریان یافتگی تیکسوتروپی و نازک شدگی برشی از خود به نمایش گذاشتند. چرخه های پسماند نمونه های شیر بدون چربی با اینولین شبیه به نمونه های شیر کامل بدون اینولین بود. نمونه های شیر بدون چربی سازگاری و نازک شدگی برشی پایین تری هم نسبت به نمونه های شیر کامل و هم نسبت به نمونه های شیر بدون چربی اینولین دار از خود نشان دادند. اضافه شدن اینولین هر دو مقدار مدول ذخیره سازی و ویسکوزیته مختلط را افزایش داد و مقدار تانژانت زاویه افت را کاهش داد، به جز در نمونه با 4٪ نشاسته. اضافه کردن اینولین به دسرهای مدل لبنی بدون چربی شیرینی، غلظت و حالت خمیری را افزایش داد. در غلظتهای نشاسته کم، نمونه های شیر بدون چربی اینولینی، با چاشنی وانیل بیشتر و با غلطت مشابه نسبت به دسرهای شیر کامل، شیرین تر به نظر رسید، اما در 4٪ نشاسته، دومی غلیظ تر بود و حالت خمیری بیشتری داشت.

کلید واژه ها: اینولین؛ دسر لبنی؛ محتوای چربی؛ رفتار جریان؛ غلظت؛ حالت خمیری


دانلود با لینک مستقیم


اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته

بررسی تاثیر تیتانیم و کربن بر ریزساختار و خواص سایشی کامپوزیت Fe - TiC

اختصاصی از زد فایل بررسی تاثیر تیتانیم و کربن بر ریزساختار و خواص سایشی کامپوزیت Fe - TiC دانلود با لینک مستقیم و پر سرعت .

بررسی تاثیر تیتانیم و کربن بر ریزساختار و خواص سایشی کامپوزیت Fe - TiC


بررسی تاثیر تیتانیم و کربن بر ریزساختار و خواص سایشی کامپوزیت Fe - TiC

 

 

 

 

 

 

 

چکیده :

هدف اصلی در این پروژه بررسی تغییر درصد تیتانیم و کربن بر روی ریز ساختار و خواص سایشی مکانیکی کامپوزیت فروتیک( Fe/TiC ) است.

نتایج حاصله نشان داده است که با کنترل ترکیب شیمیایی، نوع عملیات حرارتی، اصلبح روش ساخت و سرعت انجمادی قطعه می توان ریز ساختار زمینه، نحوه توزیع ذرات سرامیکی (TiC) و میانگین اندازه ذرات ( TiC) و تعداد آنها در واحد سطح و شکل آنها و کسر حجمی آن و در نهایت چگالی کامپوزیت که منجر به خواص سایشی و مکانیکی متفاوت می گردد را کنترل نمود.

افزایش مقدار کربن و تیتانیم باعث افزایش مقدار کاربید تیتانیم، سختی، مقاومت به سایش و اندازه ذرات کاربیدی می شود در حالی که چگالی کامپوزیت کاهش می یابد.

فهرست مطالب :

فصل اول : مقدمه

مقدمه                                                                                                    

فصل دوم : مروری بر منابع

1-2- عوامل مؤثر بر خواص کامپوزیتها                                                                  

2-2- تقسیم بندی کامپوزیتها                                                                                  

3-2- تریبولوژی و تریبوسیستم                                                                                

1-3-2- تعریف سایش و عوامل اثر گذار روی آن

2-3-2- انواع مکانیزم های سایش                                                                                              

1-2-3-2- سایش چسبان                                                                                          

2-2-3-2- سایش خراشان                                                                                        

3-2-3-2- سایش خستگی                                                                                        

4-2-3-2- سایش ورقه ای                                                                                        

5-2-3-2- سایش اکسایش

3-3-2- پارامتر سایش                                                                          

4-3-2- رابطه بین مقاومت به سایش و سختی                                                            

5 -3-2- منحنی سایش                                                                                                

4-2- کامپوزیت فروتیک                                                                                      

1-4-2- انواع کامپوزیت های فروتیک                                                                      

1-1-4-2- کامپوزیت هایی که با کوئینچ سخت می شوند                                                

2-1-4-2- کامپوزیت هایی که با پیر سختی سخت می شوند                                                

2-4-2- روشهای ساخت فروتیک                                                                                    

1-2-4-2- ساخت کامپوزیت به صورت غیر همزمان                                                          

الف) پراکنده کردن ذرات فاز دوم                                                                

ب) روش پاششی                                                                                          

ج) تزریق مذاب فلزی                                                                                    

2-2-4-2- ساخت فروتیک به صورت همزمان ( insitu)                                                      

الف) سنتز خود احتراقی (SHS)                                                                          

ب)  XD                                                                                                

ج) دمش گاز واکنش دهنده                                                                        

د) اکسایش مستقیم فلز(DIMOX)                                                                

ه) primex                                                                                                

و) واکنش حین تزریق                                                                                  

ز) واکنش شیمیایی در داخل مذاب                                                                

ح) روش آلیاژسازی مکانیکی                                                                          

ط) متالورژی پودر                                                                                        

ی) احیای کربوترمال                                                                                    

ک) احیای ترمیت                                                                                          

ل) روش سطحی                                                                                            

3-4-2- خواص کامپوزیت های فروتیک                                                                          

1-3-4-2- سختی                                                                                                          

2-3-4-2- استحکام                                                                                                        

3-3-4-2- مدول الاستیکی                                                                                              

4-3-4-2- مقاومت به سایش                                                                                            

پارامترهای موثر روی سایش                                                                                  

الف) کسر حجمی کاربید تیتانیم                                                                            

ب) اندازه ذرات و شکل آنها                                                                            

ج) نوع زمینه                                                                                                  

د) کاربید های ریخته گری                                                                                    

ه) عملیات حرارتی و سرعت سرد کردن زمینه                                                    

و) نیرو در دستگاه pin on Disk                                                                  

ز) عیوب در قطعات                                                                                      

ح) اثر ذوب مجدد                                                                                              

5-3-4-2- ماشین کاری                                                                                            

6-3-4-2- عملیات حرارتی                                                                                        

7-3-4-2- جذب ارتعاش                                                                                          

8-3-4-2- دانسیته                                                                                                      

9-3-4-2- فرسایش                                                                                                  

فصل سوم : مطالعه موردی

1-3- روش تحقیق                                                                                          

1-1-3 - مواد اولیه                                                                                                                

2-1-3- عملیات ذوب و ریخته‌گری                                                                                        

3-1-3- آماده سازی نمونه‌ها                                                                                                    

4-1-3- آنالیز نمونه‌ها                                                                                                                

5-1-3- متالوگرافی                                                                                                                  

6-1-3- آزمایش سختی                                                                                                              

7-1-3- تست سایش                                                                                                                  

2-3- بیان نتایج

1-2-3- ریزساختار نمونه‌های حاوی مقادیر مختلف کربن با تیتانیم ثابت                                   

2-2-3- ریزساختار نمونه‌های حاوی مقادیر مختلف تیتانیم با کربن ثابت                                    

3-2-3- تاثیر درصد کربن بر خواص نمونه‌ها                                                                            

4-2-3- تاثیر درصد تیتانیم بر خواص نمونه‌ها                                                                            

5-2-3- نتایج پراش اشعه ایکس                                                                                  

6-2-3- تأثیر درصد کربن بر خواص سایشی نمونه‌ها                                                                  

7-2-3- تأثیر درصد تیتانیم بر خواص سایشی نمونه‌ها                                                                

3-3- بحث نتایج

1-3-3- بررسی تشکیل فاز کاربید تیتانیم                                                                             

2-3-3- مطالعه مسیر انجماد در کامپوزیت Fe-TiC                          

3-3-3- تأثیر درصد کربن بر ریزساختار کامپوزیت فروتیک                                                

4-3-3- تأثیر درصد تیتانیم بر ریزساختار نمونه‌ها  

5-3-3- تأثیر درصد کربن بر چگالی کامپوزیت Fe-TiC                                     

6-3-3- تأثیر مقدار کربن بر سختی کامپوزیت Fe-TiC

7-3-3- تأثیر مقدار کربن بر خواص سایشی کامپوزیت Fe-TiC                      

8 -3-3- تأثیر مقدار تیتانیم بر چگالی نمونه‌ها      

9-3-3- تأثیر مقدار تیتانیم بر سختی کامپوزیت Fe-TiC                                          

10-3- 3-تاثیر مقدار تیتانیم بر خواص سایشی کامپوزیت                                           

11-3-3- بررسی سطوح سایش    

فصل چهارم : نتیجه گیری و پیشنهادها

1-4 نتیجه گیری

2-4 پیشنهادها

منابع و مراجع 


دانلود با لینک مستقیم


بررسی تاثیر تیتانیم و کربن بر ریزساختار و خواص سایشی کامپوزیت Fe - TiC

اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته

اختصاصی از زد فایل اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته دانلود با لینک مستقیم و پر سرعت .

اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته


اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته

 

 

 

 

 

 

 

 

 

عنوان انگلیسی: 

Effect of inulin addition on rheological and sensory properties of fat-free starch-based dairy desserts

عنوان فارسی:

اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته

 

 

تعداد صفحات مقاله اصلی: 9 صفحه

تعداد صفحات ترجمه: 17 صفحه

سال انتشار: 2006

مجله

 

International Dairy Journal 16 (2006) 1104–1112

 

 

Abstract

The effect of inulin addition on the rheological and sensory properties of fat-free dairy desserts containing different starch concentrations (2.5%, 3.25% and 4%) was compared with the properties of full fat milk samples. All samples showed a thixotropic and shear-thinning flow behaviour. Hysteresis loops of inulin–skimmed milk samples were similar to those of whole milk samples without inulin. Skimmed milk samples showed lower consistency and lower shear thinning than either whole milk or inulin–skimmed milk samples. Inulin addition increased both storage modulus and complex viscosity values and decreased loss angle tangent value, except in the 4% starch sample. Adding inulin to fat-free dairy model desserts increased sweetness, thickness and creaminess. At low starch concentrations, inulin–skimmed milk desserts were perceived as sweeter, with more vanilla flavour and with the same thickness as whole milk desserts, but at 4% starch, the latter were thicker and creamier

 

Keywords: Inulin; Dairy dessert; Fat content; Flow behaviour; Thickness; Creaminess

 

 

 

چکیده

اثر افزودن اینولین بر روی خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی با غلظتهای نشاسته مختلف (5/2٪، 25/2٪ و 4٪) با خواص نمونه های شیر پرچرب مقایسه شد. تمام نمونه ها رفتار جریان یافتگی تیکسوتروپی و نازک شدگی برشی از خود به نمایش گذاشتند. چرخه های پسماند نمونه های شیر بدون چربی با اینولین شبیه به نمونه های شیر کامل بدون اینولین بود. نمونه های شیر بدون چربی سازگاری و نازک شدگی برشی پایین تری هم نسبت به نمونه های شیر کامل و هم نسبت به نمونه های شیر بدون چربی اینولین دار از خود نشان دادند. اضافه شدن اینولین هر دو مقدار مدول ذخیره سازی و ویسکوزیته مختلط را افزایش داد و مقدار تانژانت زاویه افت را کاهش داد، به جز در نمونه با 4٪ نشاسته. اضافه کردن اینولین به دسرهای مدل لبنی بدون چربی شیرینی، غلظت و حالت خمیری را افزایش داد. در غلظتهای نشاسته کم، نمونه های شیر بدون چربی اینولینی، با چاشنی وانیل بیشتر و با غلطت مشابه نسبت به دسرهای شیر کامل، شیرین تر به نظر رسید، اما در 4٪ نشاسته، دومی غلیظ تر بود و حالت خمیری بیشتری داشت.

کلید واژه ها: اینولین؛ دسر لبنی؛ محتوای چربی؛ رفتار جریان؛ غلظت؛ حالت خمیری


دانلود با لینک مستقیم


اثر افزودن اینولین بر خواص رئولوژیکی و حسی دسرهای لبنیاتی بدون چربی پایه نشاسته